Особенности полевых транзисторов. Что такое полевой транзистор и как его проверить

Интерес к статическим параметрам полевого транзистора с p-n -переходом на затворе, таким как начальный ток стока и напряжение отсечки, проявляется чаще всего инженерами и радиолюбителями либо как к приводимым в справочниках характеристикам для сравнения транзисторов различных типов, либо в связи с подбором близких по параметрам транзисторов для дифференциального каскада. В настоящей статье речь пойдёт об использовании статических параметров при расчёте схем на полевых транзисторах.

Определения

На рис.1. приведено условное графическое обозначение полевого транзистора с n -каналом и управляющим p-n -переходом на затворе:

Рис.1

Обозначение его выводов соответственно следующее:

G (Gate) — затвор;
S (Source) — исток;
D (Drain) — сток.

Основными статическими параметрами полевого транзистора с p-n -переходом на затворе являются начальный ток стока и напряжение отсечки. Начальный ток стока полевого транзистора определяется как ток, протекающий через его канал при заданном постоянном напряжении сток-исток и равном нулю напряжении затвор-исток. В англоязычной технической документации этот параметр обозначают как I DSS .

Напряжение отсечки — это такое пороговое значение напряжения затвор-исток, по достижении которого ток через канал полевого транзистора уже не изменяется и практически равен нулю. Его также измеряют при фиксированном значении напряжения сток-исток и в англоязычной документации обозначают как V GS(off) или реже как V p .

В качестве усилительного элемента полевой транзистор работает при достаточно большом напряжении сток-исток V DS — на графике семейства выходных характеристик транзистора это значение напряжения расположено в области насыщения. Это значит, что величина тока через канал полевого транзистора, — ток стока I D , — зависит в основном лишь от величины напряжения затвор-исток V GS . Эту зависимость тока стока полевого транзистора I D от входного напряжения затвор-исток V GS описывает так называемая передаточная характеристика транзистора. Для транзисторов с управляющим p-n -переходом её обычно аппроксимируют следующим выражением:

Таким образом ток стока полевого транзистора с изменением напряжения на его затворе изменяется по квадратичному закону. Графически эту зависимость иллюстрирует приведенная на рис.2 диаграмма:

Рис.2. Пример аппроксимации зависимости тока стока I D от напряжения затвор-исток V GS квадратичной функцией при начальном токе стока I DSS = 9,5 mA и напряжении отсечки V GS(off) = -2,8 V.

В таком изменении тока стока I D с изменением напряжения затвор-исток V GS и проявляются усилительные свойства полевого транзистора. Количественно эти свойства характеризует такой его параметр как крутизна, определяемая как:

Понятно, что значение крутизны, выраженное через статические параметры полевого транзистора I DSS и V GS(off) , можно получить дифференцируя выражение для передаточной характеристики (1) по dV GS :

То есть для транзистора с известными значениями начального тока стока I DSS и напряжения отсечки V GS(off) при заданном напряжении затвор-исток V GS крутизну передаточной характеристики можно рассчитать по формуле:

или, учитиывая равенство:

получаем еще одно выражение для крутизны при заданном токе стока I D :

Установка рабочей точки

На рис.3 приведены основные схемы включения полевого транзистора с управляющим p-n -переходом на затворе:

а) усилительный каскад с общим истоком;
б) истоковый повторитель;
в) двухполюсник — стабилизатор тока.

Рис.3 Основные схемы включения полевого транзистора с управляющим p-n-переходом на затворе.

Во всех этих схемах для установки требуемого значения тока стока I D служит включенный в цепь истока резистор R S . Потенциал затвора полевого транзистора равен потенциалу нижнего по схеме вывода этого резистора, поэтому ток стока I D , напряжение затвор-исток V GS и сопротивление R S элементарно связаны между собой законом Ома:

Расчет сопротивления R S для установки требуемого тока стока I D для полевого транзистора с известными значеними начального тока стока I DSS и напряжения отсечки V GS(off) также можно произвести на основании выражения для передаточной характеристики (1) :

откуда получаем равенство:

Разделим обе части равенства (6) на R S и, с учётом выражения (5) , получим:

Соответственно выражение для значения сопротивления R S примет следующий вид:

Теория и практика

Исходя из приведенных математических выкладок логично предположить, что, измерив значения начального тока стока I DSS и напряжения отсечки V GS(off) — основных статических параметров полевого транзистора с управляющим p-n -переходом на затворе, — можно определить крутизну передаточной характеристики транзистора в заданной рабочей точке или установить рабочую точку транзистора так, чтобы получить требуемое значение крутизны, рассчитать параметры других элементов схемы, и пр. Но практические результаты чаще всего оказываются далеки от расчетных.

Такое несоответствие теории и практики отмечается и в ряде авторитетных публикаций на тему работы полевого транзистора. Так, например, в один и тот же абзац содержит и утверждение о том, что передаточная характеристика полевого транзистора «достаточно точно определяется квадратичной зависимостью» в соответствии с формулой (1) , и оговорку, что на практике с помощью прибора зафиксировать величину соответствующего напряжения отсечки V GS(off) очень трудно, и поэтому обычно измеряют напряжение затвор-исток при I D = 0,1·I DSS , а затем, подставив эти значения в формулу (1) , вычисляют уже соответствующее ей значение напряжения отсечки по формуле:

В также отмечается, что измеренное значение напряжения отсечки V GS(off) , при котором величина тока стока I D становится нулевой или равной нескольким микроамперам, «не всегда будет удовлетворять равенству (1) , поэтому удобнее вычислять величину как функцию V GS и экстраполировать полученную прямую линию до значения тока I D =0″ .

Поскольку речь идёт о наиболее точном определении передаточной характеристики полевого транзистора с управляющим p-n -переходом на затворе, то величина напряжения отсечки V GS(off) конкретного транзистора важна лишь как параметр в выражении (1) , при котором это выражение наиболее соответствует реальной передаточной характеристике этого транзистора. То же самое можно сказать и о величине начального тока стока I DSS . Таким образом может оказаться, что прямое измерение статических параметров полевого транзистора особого практического смысла не имеет, поскольку эти параметры не описывают с достаточной точностью передаточную характеристику транзистора.

На практике при проектировании схем усилительных каскадов на полевых транзисторах с управляющим p-n -переходом на затворе режим их работы никогда не выбирают таким, чтобы напряжение затвор-исток V GS было близким к напряжению отсечки V GS(off) или к нулю. Следовательно, нет никакой необходимости описывать передаточную характеристику (1) на всём её протяжении от I D =0 до I D =I DSS , достаточно сделать это для некоего рабочего участка от I D1 =I D (V GS1) до I D2 =I D (V GS2) . Для этого решим следующую задачу.

Пусть путём измерения получены значения тока стока I D1 и I D2 соответственно для двух отстоящих друг от друга значений напряжения затвор-исток V GS1 и V GS2 :

Решив систему уравнений (9) относительно значений начального тока стока и напряжения отсечки мы получим более соответствующие реальной передаточной характеристике параметры формулы (1) .

Сначала определим значение . Для этого разделим второе уравнение на первое чтобы сократилось и получилось одно уравнение с одним неизвестным, которое решаем:

Таким образом искомое значение напряжения отсечки для формулы (1) определяется выражением:

А соответствующее значение начального тока стока вычисляется путём подстановки полученного по формуле (10) значения напряжения отсечки в следующее выражение, полученное из формулы (1) :

Экспериментальные данные

Вычисленные по формулам (10) и (11) значения напряжения отсечки и начального тока стока после подстановки в формулу (1) должны дать более точное соответствие этой формулы передаточной характеристике реального полевого транзистора. Чтобы это проверить были проведены контрольные измерения параметров двенадцати полевых транзисторов четырёх типов — по три транзистора каждого типа.

Порядок измерений для каждого транзистора был следующим. Сначала измерялись начальный ток стока I DSS и напряжение отсечки V GS(off) полевого транзистора. Затем были измерены значения напряжений затвор-исток V GS1 и V GS2 для двух соответствующих им значений тока стока I D1 и I D2 , несколько отстоящих от нулевого значения при V GS =V GS(off) и начального тока стока I DSS . Подстановка V GS1 , V GS2 , I D1 и I D2 в формулы (10) и (11) давала искомые значения и . Чтобы иметь возможность затем сравнить, какая же пара параметров полевого транзистора, — I DSS и V GS(off) или и , — после подстановки в формулу (1) даёт более точное соответствие этой формулы передаточной характеристике реального полевого транзистора, ток стока полевого транзистора устанавливался примерно равным половине измеренного значения его начального тока стока I DSS , то есть где-то посередине передаточной характеристики транзистора, с последующим измерением соответствующего этому току напряжения затвор-исток. Полученные таким образом значения I D0 и V GS0 — это координаты произвольно выбранной рабочей точки полевого транзистора на его передаточной характеристике. Осталось подставить теперь значение V GS0 в формулу (1) сначала с парой параметров I DSS и V GS(off) , а затем с и , и сравнить оба вычисленных значения тока стока с измеренным I D0 .

Результаты измерений параметров двенадцати полевых транзисторов приведены в таблице ниже.

Транзистор Измеренные значения статических параметров Значения статических параметров по формулам
(10) и (11)

V GS0 ,
В

I D0 ,
мА
Значение тока стока I D , вычисленное по формуле (1) с параметрами
I DSS и V GS(off)
Значение тока стока I’ D , вычисленное по формуле (1) с параметрами
I’ DSS и V’ GS(off)

I DSS ,
мА

V GS(off) ,
В

I’ DSS ,
мА

V’ GS(off) ,
В

I D ,
мА

Ошибка,
%

I’ D ,
мА

Ошибка,
%
1 КП303В 2,95 -1,23 2,98 -1,35 -0,40 1,52 1,33 -12,5 1,47 -3,6
2 КП303В 2,89 -1,20 2,95 -1,32 -0,40 1,48 1,28 -13,1 1,43 -3,2
3 КП303В 2,66 -1,16 2,70 -1,24 -0,36 1,41 1,26 -10,2 1,35 -3,8
4 2П303Е 12,06 -4,26 12,73 -4,90 -1,49 6,49 5,09 -21,5 6,16 -5,2
5 2П303Е 11,24 -3,94 11,69 -4,50 -1,37 6,06 4,79 -20,9 5,67 -6,5
6 2П303Е 10,92 -3,77 11,26 -4,31 -1,29 5,91 4,73 -20,0 5,53 -6,3
7 2N3819 10,64 -3,47 10,76 -3,91 -1,08 5,90 5,05 -14,4 5,64 -4,4
8 2N3819 10,22 -3,51 10,29 -3,90 -1,06 5,73 4,98 -13,1 5,46 -4,8
9 2N3819 10,30 -3,38 10,46 -3,80 -1,07 5,67 4,81 -15,2 5,40 -4,8
10 2N4416A 8,79 -2,98 9,05 -3,27 -1,04 4,46 3,71 -16,9 4,20 -5,9
11 2N4416A 10,10 -3,22 10,31 -3,55 -1,18 4,98 4,04 -19,0 4,58 -8,0
12 2N4416A 10,92 -3,93 12,66 -4,32 -1,63 5,36 4,09 -23,6 4,92 -8,2

Выделенные цветом значения погрешностей говорят сами за себя. Если же сравнивать графики передаточной характеристики, подобные приведенному на рис.2 , то линия, построенная по значениям (; ), пройдёт гораздо ближе к точке (V GS0 ; I D0 ), чем построенная по измеренным значениями напряжения отсечки и начального тока стока (V GS(off) ; I DSS ).

Результаты будут ещё более точными, если в качестве точек (V GS1 ; I D1 ) и (V GS2 ; I D2 ) взять границы более узкого отрезка передаточной характеристики полевого транзистора, на котором он будет работать в реальной схеме. Особо следует отметить, что данный метод определения статических параметров полевых транзисторов незаменим для транзисторов с большим начальным током стока, например для таких как J310 .

©Задорожный Сергей Михайлович, 2012г., г.Киев

Литература:

  1. Бочаров Л.Н., «Полевые транзисторы»; Москва, издательство «Радио и связь», 1984;
  2. Титце У., Шенк К., «Полупроводниковая схемотехника»; перевод с немецкого; Москва, издательство «Мир», 1982.

Полупроводниковые приборы, работа которых основана на модуляции сопротивления полупроводникового материала поперечным электрическим полем, называют полевыми транзисторами. У них в создании электрического тока участвуют носители заряда только одного типа (электроны или дырки).

Полевые транзисторы бывают двух видов: с управляющим p-n-переходом и со структурой металл - диэлектрик - полупроводник (МДП-транзисторы).

Рис. 2.37. Упрощенная структура полевого транзистора с управляющим (а); условные обозначения транзистора, имеющего канал n-типа (б) и р-типа (в); типовые структуры (г, д): структура транзистора с повышенным быстродействием (е)

Транзистор с управляющим p-n-переходом (рис. 2.37) представляет собой пластину (участок) из полупроводникового материала, имеющего электропроводность определенного типа, от концов которой сделаны два вывода - электроды стока и истока. Вдоль пластины выполнен электрический переход (p-n-переход или барьер Шотки), от которого сделан третий вывод - затвор.

Внешние напряжения прикладывают так, что между электродами стока и истока протекает электрический ток, а напряжение, приложенное к затвору, смещает электрический переход в обратном направлении. Сопротивление области, расположенной под электрическим переходом, которая носит название канала, зависит от напряжения на затворе. Это обусловлено тем, что размеры перехода увеличиваются с повышением приложенного к нему обратного напряжения, а увеличение области, обедненной носителями заряда, приводит к повышению электрического сопротивления канала.

Таким образом, работа полевого транзистора с управляющим p-n-переходом основана на изменении сопротивления канала за счет изменения размеров области, обедненной основными носителями заряда, которое происходит под действием приложенного к затвору обратного напряжения.

Электрод, от которого начинают движение основные носители заряда в канале, называют истоком, а электрод, к которому движутся основные носители заряда, называют стоком. Упрощенная структура полевого транзистора с управляющим p-n-переходом приведена на рис. 2.37, а. Условные обозначения даны на рис. 2.37, б, в, а структуры выпускаемых промышленностью полевых транзисторов - на рис. 2.37, г - е.

Если в пластинке полупроводника, например n-типа, созданы зоны с электропроводностью p-типа, то при подаче на p-n-переход напряжения, смещающего его в обратном направлении, образуются области, обедненные основными носителями заряда (рис. 2.37, а). Сопротивление полупроводника между электродами истока и стока увеличивается, так как ток проходит только по узкому каналу между переходами. Изменение напряжения затвор - исток приводит к изменению размеров зоны объемного заряда (размеров ), т. е. к изменению сопротивления канала. Канал может быть почти полностью перекрыт и тогда сопротивление между истоком и стоком будет очень высоким (несколько - десятки ).

Напряжение между затвором и истоком, при котором ток стока достигает заданного низкого значения , называют напряжением отсечки полевого транзистора . Строго говоря, при напряжении отсечки транзистор должен закрываться полностью, но наличие утечек и сложность измерения особо малых токов заставляют считать напряжением отсечки то напряжение, при котором ток достигает определенного малого значения. Поэтому в технических условиях на транзистор указывают, при каком токе стока произведено измерение .

Ширина p-n-перехода зависит также от тока, протекающего через канал. Если , например (рис. 2.37, а), то ток , протекающий через транзистор, создаст по длине последнего падение напряжения, которое оказывается запирающим для перехода затвор - канал.

Рис. 2.38. Выходные характеристики полевого транзистора с управляющим его входная характеристика (6) и характеристика передачи (стокозатворная) (в): I - крутая область; II - пологая область, или область насыщения; III - область пробоя

Это приводит к увеличению ширины и соответственно к уменьшению сечения и проводимости канала, причем ширина p-n-перехода увеличивается по мере приближения к области стока, где будет иметь место наибольшее падение напряжения, вызванное током на сопротивлении канала . Так, если считать, что сопротивление транзистора определяется только сопротивлением канала, то у края p-n-перехода, обращенного к истоку, будет действовать напряжение , а у края, обращенного к стоку, - напряжение . При малых значениях напряжения и малом транзистор ведет себя как линейное сопротивление. Увеличение приводит к почти линейному возрастанию , а уменьшение - к соответствующему уменьшению . По мере роста характеристика все сильнее отклоняется от линейной, что связано с сужением канала у стокового конца. При определенном значении тока наступает так называемый режим насыщения (участок II на рис. 2.38, а), который характеризуется тем. что с увеличением ток меняется незначительно. Это происходит потому, что при большом напряжении канал у стока стягивается в узкую горловину. Наступает своеобразное динамическое равновесие, при котором увеличение и рост тока вызывают дальнейшее сужение канала и соответственно уменьшение тока . В итоге последний остается почти постоянным. Напряжение, при котором наступает режим насыщения, называется напряжением насыщения. Оно, как видно из рис. , меняется при изменении напряжения . Так как влияние на ширину канала у стокового вывода практически одинаково, то

Итак, напряжение отсечки, определенное при малом напряжении , численно равно напряжению насыщения при , а напряжение насыщения при определенном напряжении на затворе равно разности напряжения огсечки и напряжения затвор - исток.

При значительном увеличении напряжения стокового конца наблюдается пробой p-n-перехода.

В выходных характеристиках полевого транзистора можно выделить две рабочие области ОА и ОВ. Область ОА называют крутой областью характеристики, обласгь АВ - пологой или областью насыщения. В крутой области транзистор может быть использован как омическое управляемое сопротивление. В усилительных каскадах транзистор работает на пологим участке характеристики. За точкой В возникает пробой электрического перехода.

Входная характеристика полевою транзистора с управляющим -переходом (рис. 2.38,б) представляет собой обратную ветвь вольт-амперной характеристики -перехода. Хотя ток затвора несколько меняется при изменении напряжения и достигает наибольшего значения при условии короткого замыкания выводов истока и стока (ток утечки затвора ) - им в большинстве случаев можно пренебречь. Изменение напряжения не вызывает существенных изменений тока затвора, что характерно для обратного тока -переходa.

При работе в пологой области вольт-амперной характеристики ток стока при заданном напряжении 11ш определяют из выражения

где - начальный ток стока, под которым ток при и напряжении на стоке, превышающем напряжение насыщения: .

Так как управление полевым транзистором осуществляется напряжением на затворе, то для количественном оценки управляющего действия затвора используют крутизну характеристики

Крутизна характеристики достигает максимального значения при . Для определения значения S при любом напряжении продифференцируем выражение

При выражение (2.73) примет вид

Подставив (1.74) в выражение (1.73), получим .

Таким образом, крутизна характеристики полевого транзистора уменьшается при увеличении напряжения, приложенного к его затвору.

Начальное значение крутизны характеристики можно определить графоаналитическим способом. Для этого проведем касатетельную из точки к стокозатворной характеристике (рис. 2.38. в). Она отсечет на оси напряжений отрезок , и ее наклон определит значение .

Усилительные свойства полевых транзисторов характеризуются коэффициентом усиления

который связан с крутизной характеристики и внутренним сопротивлением уравнением , где - дифференциальное внутреннее сопротивление транзистора.

Действительно, в общем случае .

Если при одновременном изменении и , то , откуда

Так же как и у биполярных, у полевых транзисторов различают режимы большого и малого сигналов. Режим большого сигнала чаще всего рассчитывают с помощью входных и выходных характеристик транзистора и эквивалентной схемы рис. 2.39, а. Для анализа режима малого сигнала широко применяют малосигнальные эквивалентные схемы рис. 2.39, б-г (транзистор с каналом p-типа). Так как сопротивления закрытых переходов , в кремниевых полевых транзисторах велики (десятки - сотни МОм), их в большинстве случаев можно не учитывать. Для практических расчетов наиболее удобна эквивалентная схема рис. 2.39, г, хотя она значительно хуже отражает действительные физические процессы, протекающие в рассматриваемых транзисторах. Все емкости затвора на схеме заменены одной эквивалентной емкостью С„ которая заряжается через усредненное эквивалентное сопротивление .

Рис. 2.39. Упрощенная эквивалентная схема полевого транзистора с управляющим p-n-переходом для постоянного тока (а); малосигнальные эквивалентные схемы: полная (б), упрощенная (в), модифицированная (г).

Можно считать, что равно статическому сопротивлению в крутой области характеристик - сопротивление между стоком и истоком в открытом состоянии транзистора при заданном напряжении сток - исток, меньшем напряжения насыщения. Сопротивление затвора (омическое) отражено эквивалентным сопротивлением , которое ввиду его большого значения (десятки-сотни ) можно не учитывать.

Типовые значения параметров кремниевых транзисторов, входящих в эквивалентную схему: .

Емкости у полевого транзистора, а также конечная скорость движения носителей заряда в канале определяют его инерционные свойства. Инерционность транзистора в первом приближении учитывают путем введения операторной крутизны характеристики

где - предельная частота, определенная на уровне 0,7 статического значения крутизны характеристики.

При изменении температуры параметры и характеристики полевых транзисторов с управляющим изменяются из-за воздействия следующих факторов: изменения обратного тока закрытого p-n-перехода; изменения контактной разности потенциалов изменения удельного сопротивления канала.

Обратный ток у закрытого возрастает по экспоненциальному закону при увеличении температуры. Ориентировочно можно считать, что он удваивается при увеличении температуры на 6-8 С. Если в цепи затвора транзистора стоит большое внешнее сопротивление, то падение напряжения на нем, вызванное изменившимся током, может существенно изменить напряжение на затворе.

Контактная разность потенциалов уменьшается при увеличении температуры приблизительно на . При неизменном напряжении на затворе это приводит к увеличению тока стока. Для транзисторов с низким напряжением отсечки этот эффект является преобладающим и изменения тока стока будут иметь положительные значения.

Так как температурный коэффициент, характеризующий изменение удельного сопротивления канала, положителен, то ток стока при росте температуры уменьшается. Это открывает возможность правильным выбором положения рабочей точки транзистора взаимно компенсировать изменения тока , вызванные изменением контактной разности потенциалов и удельного сопротивления канала. В итоге ток стока будет почти постоянным в широком диапазоне температур.

Рабочую точку, в которой изменение гока стока с изменением температуры имеет минимальное значение, называют термостабильной точкой. Ее ориентировочное положение можно найти из уравнения

Из (2.78) видно, что при значительном крутизна характеристики в термостабильной точке невелика и от транзистора можно получить значительно меньший коэффициент усиления, чем при работе с малым напряжением.

Рис. 2.40. Включение полевого транзистора в схемы: а - с общим истоком; б - с общим стоком

Современные полевые транзисторы, выполненные на основе кремния, работоспособны до температуры 120-150 С. Их включение в схемы усилительных каскадов с общим истоком и общим стоком показано на рис. 2.40, а, б. Постоянное напряжение обеспечивает получение определенного значения сопротивления канала и определенный ток стока . При подаче входного усиливаемого напряжения потенциал затвора меняется, а соответственно изменяются токи стока и истока, а также падение напряжения на резисторе R.

Приращение падения напряжения на резисторе R при большом его значении значительно больше приращений входного напряжения. За счет этого осуществляется усиление сигнала. Ввиду малой распространенности включение с общим затвором не показано. При изменении типа электропроводности канала меняются только полярность приложенных напряжений и направление токов, в том числе и в эквивалентных схемах.

Основными премуществами полевых транзисторов с управляющим p-n-переходом перед биполярными являются высокое входное сопротивление, малые шумы, простота изготовления, отсутствие в открытом состоянии остаточного напряжения между истоком и стоком открытого транзистора.

МДП - транзисторы могут быть двух типов: транзисторы с встроенными каналами (канал создается при изготовлении) и транзисторы с индуцированными каналами (канал возникает под действием напряжения, приложенного к управляющим электродам).

Транзисторы первого типа могут работать как в режиме обеднения канала носителями заряда, так и в режиме обогащения. Транзисторы второго типа можно использовать только в режиме обогащения. У МДП-транзисторов в отличие от транзисторов с управляющим p-n-переходом металлический затвор изолирован от полупроводника слоем диэлектрика и имеется дополнительный вывод от кристалла, на котором выполнен прибор (рис. 2.41), называемый подложкой.

Рис. 2.41. Структуры МДП-транзистора: а - планарный транзистр с индуцированным каналом. б - планарный транзистор со встроенным каналом; , транзистр - и .

Рис. 2.42. Распределение носителей заряда в приповерхностном слое

Управляющее напряжение можно подавать как между затвором и подложкой, так и независимо на подложку и затвор. Под влиянием образующегося электрического поля у поверхности полупроводника появляется канал -типа за счет отталкивания электронов от поверхности в глубь полупроводника в транзисторе с индуцированным каналом. В транзисторе с встроенным каналом происходит расширение или сужение имевшегося канала. Изменение управляющего напряжения меняет ширину канала и соответственно сопротивление и ток транзистора.

Существенным преимуществом МДП-транзисторов является высокое входное сопротивление, достигающее значений Ом (у транзисторов с управляющим -переходом Ом).

Рассмотрим несколько подробнее работу МДП-транзистора с индуцированным -каналом. Пусть в качестве исходного материала транзистора использован кремний, имеющий электропроводность -типа. Роль диэлектрической пленки выполняет диоксид кремния . При отсутствии смещения приповерхностный слой полупроводника обычно обогащен электронами (рис. 2.42, а). Это объясняется наличием положительно заряженных ионов в пленке диэлектрика, что является следствием предшествующего окисления кремния и фотолитографической его обработки, а также присутствием ловушек на границе . Напомним, что ловушки представляют собой совокупность энергетических уровней, расположенных глубоко в запрещенной зоне, близко к ее середине.

При подаче на затвор отрицательного напряжения электроны приповерхностного слоя отталкиваются в глубь полупроводника, а дырки движутся к поверхности. Приповерхностный слой приобретает дырочную электропроводность (рис. 2.42, б). В нем появляется тонкий инверсный слой, соединяющий сток с истоком. Этот слой играет роль канала. Если между истоком и стоком приложено напряжение, то дырки, перемещаясь по каналу, создают ток стока. Путем изменения напряжения на затворе можно расширять или сужать канал и тем самым увеличивать или уменьшать ток стока.

Напряжение на затворе, при котором индуцируется канал, называют пороговым напряжением . Так как канал возникает постепенно, по мере увеличения напряжения на затворе, то для исключения неоднозначности в его определении обычно задается определенное значение тока стока, при превышении которого считается, что потенциал затвора достиг порогового напряжения .

По мере удаления от поверхности полупроводника концентрация индуцированных дырок уменьшается. На расстоянии, приблизительно равном толщине канала, электропроводность становится собственной. Затем идет участок, обедненный основными носителями заряда (-переход). Благодаря ему сток, исток и канал изолированы от подложки; -переход смещен приложенным напряжением в обратном направлении. Очевидно, что его ширину и ширину канала можно изменять за счет подачи на подложку дополнительного напряжения относительно электродов стока и истока транзистора. Следовательно, током стока можно управлять не только путем изменения напряжения на затворе, но и за счет изменения напряжения на подложке. В этом случае управление МДП-транзистором аналогично управлению полевым транзистором с управляющим -переходом. Для образования канала на затвор должно быть подано напряжение, большее .

Толщина инверсного слоя значительно меньше толщины обедненного слоя. Если последний составляет сотни - тысячи нм, то толщина индуцированного канала составляет всего 1-5 нм. Другими словами, дырки индуцированного канала «прижаты» к поверхности полупроводника, поэтому структура и свойства границы полупроводник - диэлектрик играют в МДП-транзисторах очень важную роль.

Дырки, образующие канал, поступают в него не только из подложки -типа, где их мало и генерируются они сравнительно медленно, но также и из слоев -типа истока и стока, где их концентрация практически неограниченна, а напряженность поля вблизи этих электродов достаточно велика.

В транзисторах с встроенным каналом ток в цепи стока будет протекать и при нулевом напряжении на затворе. Для прекращения его необходимо к затвору приложить положительное напряжение (при структуре с каналом -типа), равное или большее напряжения отсечки . При этом дырки из инверсного слоя будут практически полностью вытеснены в глубь полупроводника и канал исчезнет. При приложении отрицательного напряжения канал расширяется и ток увеличивается. Таким образом. МДП-транзисторы с встроенными каналами работают как в режиме обеднения, так и в режиме обогащения.

Рис. 2.43. Структура МДП-транзистора с измененной шириной канала при протекании тока (а); его выходные характеристики с индуцированным (б) и встроенным (в) каналами: I крутая область; II - пологая область, или область насыщения; III - область пробоя; 1 - обеденный слой

Как и полевые транзисторы с управляющим -переходом, МДП-транзисторы при малых напряжениях (в области рис. 2.43, б, в) ведут себя подобно линеаризованному управляемому сопротивлению. При увеличении напряжения ширина канала уменьшается вследствие падения на нем напряжения и изменения результирующего электрического поля. Это особенно сильно проявляется в той части канала, которая находится вблизи стока (рис. 2.43, а). Перепады напряжения, создаваемые током , приводят к неравномерному распределению напряженности электрического поля вдоль канала, причем оно увеличивается по мере приближения к стоку. При напряжении канал вблизи стока становится настолько узким, что наступает динамическое равновесие, когда увеличение напряжения вызывает уменьшение ширины канала и повышение его сопротивления. В итоге ток мало меняется при дальнейшем увеличении напряжения . Эти процессы изменения ширины канала в зависимости от напряжения такие же, как и в полевых транзисторах с управляющим p-n-переходом.

Выходные характеристики МДП-транзисторов аналогичны характеристикам полевых транзисторов с управляющим (рис. 2.43, б, в). В них можно выделить крутую и пологую области, а также область пробоя. В крутой области МДП-транзистор может работать как электрически управляемое сопротивление. Пологая область II обычно используется при построении усилительных каскадов. Аналитические аппроксимации вольт-амперных характеристик МДП-транзисторов не очень удобны и мало применяются в инженерной практике. При ориентировочных оценках тока стока в области насыщения можно использовать уравнение

Для транзисторов с встроенным каналом можно использовать уравнения (2.79), если заменить и учитывать знаки напряжений и .. Они характеризуют параметры полевого транзистора, который при заданном режиме измерения представлен эквивалентной схемой рис. 2.44, д. Она хуже отражает особенности транзистора, но ее параметры известны или легко могут быть измерены (входная емкость , проходная емкость , выходная емкость ).

Операторное уравнение крутизны характеристики МДП-транзисторов имеет тот же вид, что и для полевых транзисторов с управляющим При этом постоянная времени . В типовом случае при длине канала 5 мкм предельная частота, на которой крутизна характеристики уменьшается в 0,7 раза, лежит в пределах нескольких сотен мегагерц.

Температурная зависимость порогового напряжения и напряжения отсечки обусловлена изменением положения уровня Ферми, изменением объемного заряда в обедненной области и влиянием температуры на значение заряда в диэлектрике. У МДП-транзисторов также можно найти термостабильную рабочую точку, в которой ток стока мало зависит от температуры. У разных транзисторов значение тока стока в термостабильной точке находится в пределах . Важным преимуществом МДП-транзисторов перед биполярными является малое падение напряжения на них при коммутации малых сигналов. Так, если в биполярных транзисторах в режиме насыщения напряжение

При уменьшении оно может быть сведено до значения, стремящегося к нулю. Так как широкое распространение получили МДП-транзисторы с диэлектриком из диоксида кремния , то в дальнейшем будем их называть МОП-транзисторами.

В настоящее время промышленность также выпускает МОП-транзисторы с двумя изолированными затворами (тетродные), например . Наличие второго затвора позволяет одновременно управлять током транзистора с помощью двух управляющих напряжений, что облегчает построение различных усилительных и умножительных устройств. Характеристики их аналогичны характеристикам однозатворных полевых транзисторов, только количество их больше, так как они строятся для напряжения каждого затвора при неизменном напряжении на другом затворе. Соответственно различают крутизну характеристики по первому и второму затворам, напряжение отсечки первого и второго затворов и т. д. Подача напряжений на затворы ничем не отличается от подачи напряжения на затвор однозатворного МОП-транзистора.

Должно превышать пороговое. В противном случае канал не появится и транзистор будет заперт.


В транзисторах этого типа затвор отделен от полупроводника слоем диэлектрика, в качестве которого в кремниевых приборах обычно используется двуокись кремния. Эти транзисторы обозначают аббревиатурой МОП (металл-окисел-полупроводник) и МДП (металл-диэлектрик-полупроводник). В англоязычной литературе их обычно обозначают аббревиатурой MOSFET или MISFET (Metal-Oxide (Insulator) -Semiconductor FET).

В свою очередь МДП-транзисторы делят на два типа.

В так называемых транзисторах со встроенным (собственным) каналом (транзистор обедненного типа) и до подачи на затвор имеется канал, соединяющий исток и сток.

В так называемых транзисторах с индуцированным каналом (транзистор обогащенного типа) указанный выше канал отсутствует.

МДП-транзисторы характеризуются очень большим входным сопротивлением. При работе с такими транзисторами надо предпринимать особые меры защиты от статического электричества. Например, при пайке все выводы необходимо закоротить.

МДП-транзистор со встроенным каналом.

Канал может иметь проводимость как p-типа, так и n-типа. Для определенности обратимся к транзистору с каналом p -типа. Дадим схематическое изображение структуры транзистора (рис. 1.97), условное графическое обозначение транзистора с каналом p-типа (рис. 1.98, а) и с каналом n-типа (рис. 1.98, б). Стрелка, как обычно, указывает направление от слоя p к слою n.

Рассматриваемый транзистор (см. рис. 1.97) может работать в двух режимах: обеднения и обогащения.

Режиму обеднения соответствует положительное uзи. При увеличении этого концентрация дырок в канале уменьшается (так как потенциал затвора больше потенциала истока), что приводит к уменьшению тока стока.

Приведем схему включения транзистора (рис. 1.99).

На стока влияет не только uзи, но и между подложкой и истоком uпи. Однако управление по затвору всегда предпочтительнее, так как при этом входные токи намного меньше. Кроме того, наличие на подложке уменьшает крутизну.

Подложка образует с истоком, стоком и каналом p-n-переход. При использовании транзистора необходимо следить за тем, чтобы на этом переходе не смещало его в прямом направлении. На практике подложку подключают к истоку (как показано на схеме) или к точке схемы, имеющей потенциал, больший потенциала истока (потенциал стока в приведенной выше схеме меньше потенциала истока).

Изобразим выходные характеристики МДП-транзистора (встроенный p-канал) типа КП201Л (рис. 1.100) и его стокозатворную характеристику (рис. 1.101).

МДП-транзистор с индуцированным (наведенным) каналом.

Канал может иметь проводимость как p-типа, так и n-типа. Для определенности обратимся к транзистору с каналом p-типа. Дадим схематическое изображение структуры транзистора (рис. 1.102), условное графическое обозначение транзистора с индуцированным каналом p -типа (рис. 1.103, а) и каналом n-типа (рис. 1.103, б).

При нулевом напряжении uзи канал отсутствует (рис. 1.102) и стока равен нулю. Транзистор может работать только в режиме обогащения, которому соответствует отрицательное uзи. При этом uиз > 0.Если выполняется неравенство uиз>u из порог, где u из порог - так называемое пороговое напряжение, то между истоком и стоком возникает канал p-типа, по которому может протекать ток.

Канал p-типа возникает из-за того, что концентрация дырок под затвором увеличивается, а концентрация электронов уменьшается, в результате чего концентрация дырок оказывается больше концентрации электронов.

Описанное явление изменения типа проводимости называют инверсией типа проводимости, а слой полупроводника, в котором оно имеет место (и который является каналом), - инверсным (инверсионным). Непосредственно под инверсным слоем образуется слой, обедненный подвижными носителями заряда. Инверсный слой значительно тоньше обедненного (толщина инверсного слоя 1 · 10 – 9 …5 · 10 – 9 м, а толщина обедненного слоя больше в 10 и более раз).

Изобразим схему включения транзистора (рис. 1.104), выходные характеристики (рис. 1.105) и стокозатворную характеристику (рис. 1.106) для МДП-транзистора с индуцированным p-каналом КП301Б.

Полезно отметить, что в пакете программ Micro-Cap II для моделирования полевых транзисторов всех типов используется одна и та же математическая модель (но, естественно, с различными параметрами).

Силовые инверторы, да и многие другие электронные устройства, редко обходятся сегодня без применения мощных MOSFET (полевых) или . Это касается как высокочастотных преобразователей типа сварочных инверторов, так и разнообразных проектов-самоделок, схем коих полным полно в интернете.

Параметры выпускаемых ныне силовых полупроводников позволяют коммутировать токи в десятки и сотни ампер при напряжении до 1000 вольт. Выбор этих компонентов на современном рынке электроники довольно широк, и подобрать полевой транзистор с требуемыми параметрами отнюдь не является проблемой сегодня, поскольку каждый уважающий себя производитель сопровождает конкретную модель полевого транзистора технической документацией, которую всегда можно найти как на официальном сайте производителя, так и у официальных дилеров.

Прежде чем приступить к проектированию того или иного устройства, с применением названных силовых компонентов, всегда нужно точно знать, с чем имеешь дело, особенно когда выбираешь конкретный полевой транзистор. Для этого и обращаются к datasheet"ам. Datasheet представляет собой официальный документ от производителя электронных компонентов, в котором приводятся описание, параметры, характеристики изделия, типовые схемы и т.д.

Давайте же посмотрим, что за параметры указывает производитель в даташите, что они обозначают и для чего нужны. Рассмотрим на примере даташита на полевой транзистор IRFP460LC. Это довольно популярный силовой транзистор, изготовленный по технологии HEXFET.

HEXFET подразумевает такую структуру кристалла, когда в одном кристалле организованы тысячи параллельно-включенных МОП-транзисторных ячеек гексагональной формы. Это решение позволило значительно снизить сопротивление открытого канала Rds(on) и сделало возможным коммутацию больших токов. Однако, перейдем к обзору параметров, указанных непосредственно в даташите на IRFP460LC от International Rectifier (IR).

См.

В самом начале документа дано схематичное изображение транзистора, приведены обозначения его электродов: G-gate (затвор), D-drain (сток), S-source (исток), а также указаны его главные параметры и перечислены отличительные качества. В данном случае мы видим, что этот полевой N-канальный транзистор рассчитан на максимальное напряжение 500 В, сопротивление его открытого канала составляет 0,27 Ом, а предельный ток равен 20 А. Пониженный заряд затвора позволяет использовать данный компонент в высокочастотных схемах при невысоких затратах энергии на управление переключением. Ниже приведена таблица (рис. 1) предельно допустимых значений различных параметров в различных режимах.

    Id @ Tc = 25°C; Continuous Drain Current Vgs @ 10V - максимальный продолжительный, непрерывный ток стока, при температуре корпуса полевого транзистора в 25°C, составляет 20 А. При напряжении затвор-исток 10 В.

    Id @ Tc = 100°C; Continuous Drain Current Vgs @ 10V - максимальный продолжительный, непрерывный ток стока, при температуре корпуса полевого транзистора в 100°C, составляет 12 А. При напряжении затвор-исток 10 В.

    Idm @ Tc = 25°C; Pulsed Drain Current - максимальный импульсный, кратковременный ток стока, при температуре корпуса полевого транзистора в 25°C, составляет 80 А. При условии соблюдения приемлемой температуры перехода. На рисунке 11 (Fig 11) дается пояснение относительно соответствующих соотношений.

    Pd @ Tc = 25°C Power Dissipation - максимальная рассеиваемая корпусом транзистора мощность, при температуре корпуса в 25°C, составляет 280 Вт.

    Linear Derating Factor - с повышением температуры корпуса на каждый 1°C, рассеиваемая мощность возрастает еще на 2,2 Вт.

    Vgs Gate-to-Source Voltage - максимальное напряжение затвор-исток не должно быть выше +30 В или ниже -30 В.

    Eas Single Pulse Avalanche Energy - максимальная энергия единичного импульса на стоке составляет 960 мДж. Пояснение дается на рисунке 12 (Fig 12).

    Iar Avalanche Current - максимальный прерываемый ток составляет 20 А.

    Ear Repetitive Avalanche Energy - максимальная энергия повторяющихся импульсов на стоке не должна превышать 28 мДж (для каждого импульса).

    dv/dt Peak Diode Recovery dv/dt - предельная скорость нарастания напряжения на стоке равна 3,5 В/нс.

    Tj, Tstg Operating Junction and Storage Temperature Range – безопасный температурный диапазон от -55°C до +150°C.

    Soldering Temperature, for 10 seconds - допустимая при пайке максимальная температура составляет 300°C, причем на расстоянии минимум 1,6мм от корпуса.

    Mounting torque, 6-32 or M3 screw - максимальный момент при креплении корпуса не должен превышать 1,1 Нм.

    Rjc Junction-to-Case (кристалл-корпус) 0.45 °C/Вт.

    Rcs Case-to-Sink, Flat, Greased Surface (корпус-радиатор) 0.24 °C/Вт.

    Rja Junction-to-Ambient (кристалл-окружающая среда) зависит от радиатора и внешних условий.

Следующая таблица содержит все необходимые электрические характеристики полевого транзистора при температуре кристалла 25°C (см. рис. 3).

    V(br)dss Drain-to-Source Breakdown Voltage - напряжение сток-исток, при котором наступает пробой равно 500 В.

    ΔV(br)dss/ΔTj Breakdown Voltage Temp.Coefficient - температурный коэффициент, напряжения пробоя, в данном случае 0,59 В/°C.

    Rds(on) Static Drain-to-Source On-Resistance - сопротивление сток-исток открытого канала при температуре 25°C, в данном случае, составляет 0,27 Ом. Оно зависит от температуры, но об этом позже.

    Vgs(th) Gate Threshold Voltage - пороговое напряжение включения транзистора. Если напряжение затвор-исток будет меньше (в данном случае 2 - 4 В), то транзистор будет оставаться закрытым.

    gfs Forward Transconductance - Крутизна передаточной характеристики, равна отношению изменения тока стока к изменению напряжения на затворе. В данном случае измерена при напряжении сток-исток 50 В и при токе стока 20 А. Измеряется в Ампер/Вольт или Сименсах.

    Idss Drain-to-Source Leakage Current - ток утечки стока, он зависит от напряжения сток-исток и от температуры. Измеряется микроамперами.

    Igss Gate-to-Source Forward Leakage и Gate-to-Source Reverse Leakage - ток утечки затвора. Измеряется наноамперами.

    Qg Total Gate Charge - заряд, который нужно сообщить затвору для открытия транзистора.

    Qgs Gate-to-Source Charge - заряд емкости затвор-исток.

    Qgd Gate-to-Drain ("Miller") Charge - соответствующий заряд затвор-сток (емкости Миллера)

В данном случае эти параметры измерены при напряжении сток-исток, равном 400 В и при токе стока 20 А. На рисунке 6 дано пояснение относительно связи величины напряжения затвор-исток и полного заряда затвора Qg Total Gate Charge, а на рисунках 13 a и b приведены схема и график этих измерений.

    td(on) Turn-On Delay Time - время открытия транзистора.

    tr Rise Time - время нарастания импульса открытия (передний фронт).

    td(off) Turn-Off Delay Time - время закрытия транзистора.

    tf Fall Time - время спада импульса (закрытие транзистора, задний фронт).

В данном случае измерения проводились при напряжении питания 250 В, при токе стока 20 А, при сопротивлении в цепи затвора 4,3 Ом, и сопротивлении в цепи стока 20 Ом. Схема и графики приведены на рисунках 10 a и b.

    Ld Internal Drain Inductance - индуктивность стока.

    Ls Internal Source Inductance - индуктивность истока.

Данные параметры зависит от исполнения корпуса транзистора. Они важны при проектировании драйвера, поскольку напрямую связаны с временными параметрами ключа, особенно это актуально при разработке высокочастотных схем.

    Crss Reverse Transfer Capacitance - емкость затвор-сток (емкость Миллера).

Данные измерения проводились на частоте 1 МГц, при напряжении сток-исток 25 В. На рисунке 5 показана зависимость данных параметров от напряжения сток-исток.

Следующая таблица (см. рис. 4) описывает характеристики интегрированного внутреннего диода полевого транзистора, условно находящегося между истоком и стоком.

    Is Continuous Source Current (Body Diode) - максимальный непрерывный длительный ток диода.

    Ism Pulsed Source Current (Body Diode) - максимально допустимый импульсный ток через диод.

    Vsd Diode Forward Voltage - прямое падение напряжения на диоде при 25°C и токе стока 20 А, когда на затворе 0 В.

    trr Reverse Recovery Time - время обратного восстановления диода.

    Qrr Reverse Recovery Charge - заряд восстановления диода.

    ton Forward Turn-On Time - время открытия диода обусловлено главным образом индуктивностями стока и истока.

Приведены пределы тока стока, в зависимости от напряжения сток-исток и напряжения затвор-исток при длительности импульса 20 мкс. Первый рисунок - для температуры 25°C, второй - для 150°C. Очевидно влияние температуры на управляемость открытием канала.

На рисунке 6 графически представлена передаточная характеристика данного полевого транзистора. Очевидно, чем ближе напряжение затвор-исток к 10 В, тем лучше открывается транзистор. Влияние температуры также просматривается здесь довольно отчетливо.

На рисунке 7 приведена зависимость сопротивления открытого канала при токе стока в 20 А от температуры. Очевидно, с ростом температуры увеличивается и сопротивление канала.

На рисунке 9 приведена зависимость прямого падения напряжения на внутреннем диоде от величины тока стока и от температуры. На рисунке 8 показана область безопасной работы транзистора в зависимости от длительности времени открытого состояния, величины тока стока и напряжения сток-исток.

На рисунке 11 показана зависимость максимального тока стока от температуры корпуса.


На рисунках а и b представлены схема измерений и график, показывающий временную диаграмму открытия транзистора в процессе нарастания напряжения на затворе и в процессе разряда емкости затвора до нуля.

На рисунке 14 показана зависимость максимально допустимой энергии импульса от величины прерываемого тока и температуры.

На рисунках а и b показаны график и схема измерений заряда затвора.

На рисунке 16 показана схема измерений параметров и график типичных переходных процессов во внутреннем диоде транзистора.

На последнем рисунке изображен корпус транзистора IRFP460LC, его размеры, расстояние между выводами, их нумерация: 1-затвор, 2-сток, 3-исток.

Так, прочитав даташит, каждый разработчик сможет подобрать подходящий силовой или не очень, полевой или IGBT-транзистор для проектируемого либо ремонтируемого силового преобразователя, будь то , или любой другой силовой импульсный преобразователь.

Зная параметры полевого транзистора, можно грамотно разработать драйвер, настроить контроллер, провести тепловые расчеты, и подобрать подходящий радиатор без необходимости ставить лишнее.

История создания и реализации полевых транзисторов

Первый полевой транзистор был изобретен Юлий Эдгаром Лилиенфельдом – австро-венгерским ученым-физиком, посвятившим большую часть жизни изучению транзисторного эффекта. Случилось это в 1928 году, однако первая технология изготовления транзисторов не позволяла физически реализовать этот радиоэлемент в промышленности. Первый работающий полевой транзистор с изолированным затвором, согласно трудам Лилиенфельда, произвели в США лишь в 1960 году. За 7 лет до этого была предложена другая технология изготовления полевого транзистора на базе управляющего p-n перехода (МОП транзистор). На основе трудов Вальтера Шоттки в 1966 году американский инженер Карвер Андресс Мид предложил новый тип транзисторов с использованием барьера Шоттки. В 1977 году было установлено, что применение полевых транзисторов в вычислительной технике значительно повышает расчетные мощности электронных устройств, что положило начало разработок компьютерных процессоров и логических микросхем на основе полевого транзистора. Более корректным названием полевого транзистора является униполярный транзистор (управляемый одним электрическим полем), однако в народе это название не прижилось.

Физические основы работы полевого транзистора

Полевым (униполярным) транзистором называют электронное устройство, в основе которого лежит принцип использования зарядов только одного знака, т.е. электронов или дырок. Управление током в полевых транзисторах осуществляется изменением проводимости канала под действием электрического поля, а не потенциала напряжения, что является основным отличием полевого транзистора от биполярного. По способу создания канала различают полевые транзисторы с p-n переходом, встроенным каналом и индуцированным каналом. Транзисторы с встроенным и индуцированным каналом так же относятся к разновидности МДП транзисторов.


Устройство полевого транзистора

а – с p-n переходом; б – с изолированным затвором и встроенным каналом; в – с изолированным затвором и индуцированным каналом.

Работа полевых транзисторов основана на движении основных носителей в полупроводнике.

Полевой транзистор с p-n переходом.

Данный транзистор состоит из основного канала полупроводника n-типа, изготовленного из пластины кремния с омическими выводами с каждого конца. Канал образован методом диффузии (введением легированного материала) и образует тончайший слой с дырочной проводимостью. Канал заключен между двумя электродами p-типа, соединенными между собой. Таким образом, n-канал образует два p-n перехода, расположенных параллельно направлению тока. Вывод, через который поступают носителя заряда, называют истоком (И), а электрод, откуда заряд вытекает – стоком (С). Оба p-слоя электрически связаны между собой и имеют внешний электрод, называемый затвором (З). Существуют два типа канала. Положительный заряд протекает через канал с p проводимостью, а отрицательный заряд проходит через канал с n проводимостью. На рисунке ниже представлен полевой канал с отрицательной проводимостью, управляемый полем положительной полярности. В данном случае через канал от истока к стоку передвигаются электроны. Подобную конструкцию имеют и полевые транзисторы с каналом p типа.

Управляющее или входное напряжение (Uзи) подается между затвором и истоком. Это напряжение для обоих p-n переходов является обратным. В выходную цепь, в которую так же входит канал транзистора, подключается напряжение Uси положительным полюсом к стоку.

Способность управления транзистором объясняется тем фактором, что при изменении напряжения Uзи будет изменяться ширина p-n переходов, которые представляют собой участки в полупроводнике, которые обеднены носителями заряда. Так как p-слой c меньшим сопротивлением имеет большую концентрацию примесей по сравнению с n-слоем, то управление изменением ширина канала происходит за счет более высокоомного n-слоя. При этом изменяется сечение, и проводимость токопроводящего канала (Ic – ток стока) от истока к стоку.

Особенность работы полевого транзистора заключается во влиянии напряжения Uзи и Uси на проводимость канала. Влияние подводимых напряжений отображает рисунок ниже.


На рисунке:

А) напряжение прикладывается только к входной управляющей цепи. Изменение Uзи управляет сечением канала по всей ширине, однако, выходной ток Ic=0 из-за отсутствия напряжения Uси.

Б) Присутствует только напряжение канала, управляющее напряжение отсутствует и начинает протекать ток Ic. Создается падение напряжения на стоковом электроде, в результате пропускная способность канала сужается и при некотором значении границы p-n переходов смыкаются. Повышается внутреннее сопротивление канала и ток Ic далее не способен проходить.

В) В этом варианте на рисунке показано суммарное значение напряжений, когда канал напряжения Uси заперт малым управляющим напряжением Uзи. При подаче этого напряжения происходит расширение n области и начинает протекать ток Ic.

Полевой транзистор с изолированным затвором (МДП и МОП)

В этих транзисторах затворный электрод отделен от канала тонким изолирующим слоем из окиси кремния. Отсюда другое название этих транзисторов – МОП-транзисторы (структура металл – окисел - полупроводник). Наличие диэлектрика обеспечивает высокое входное сопротивление рассматриваемых транзисторов. Проникновения управляющего поля в канал не затруднено, но ток затвора сильно уменьшается и не зависит от полярности приложенного напряжения к затвору. МДП-транзисторы (структура металл – диэлектрик - полупроводник) выполняют из кремния. Принцип действия МДП-транзисторов основан на эффекте изменения проводимости приповерхностного слоя полупроводника на границе с диэлектриком под воздействием поперечного электрического поля.

Каналы полевых МДП транзисторов могут быть обедненного (б - встроенный канал) и обогащенного типа (в - индуцированный канал), (см. рисунок устройства полевого транзистора).

По встроенному каналу течет ток Iс при отсутствии напряжения Uзи. Его значением можно управлять в сторону уменьшения, подав положительное напряжение Uзи, если транзистор с p-каналом и отрицательное напряжение, если транзистор с n-каналом. Другими словами – закрыть транзистор управляющим обратным напряжением.

В индуцированном канале, если отсутствует напряжение Uзи ток между стоком и истоком очень мал. При подаче управляющего напряжения ток Iси увеличивается.

Итак, управляющее напряжение при его подаче на затвор транзистора с встроенным каналом – закрывает транзистор, в индукционном канале - открывает транзистор.

Вольт - амперная и сток - затворная характеристики полевого транзистора

ВАХ полевого транзистора определяет его выходные (стоковые) характеристики, а так же содержит информацию о его свойствах в различных режимах работы. Кроме того ВАХ отображает связь параметров между собой. По графику можно определить некоторые параметры, не документированные в описании к транзистору, произвести расчеты уровня напряжения цепей смещения (Uзи), стабилизацию режима, а так же дать оценку работы полевого транзистора в широком диапазоне токов и напряжений.

На рисунке слева показан пример стоковой характеристики полевого транзистора с p-n переходом и каналом p-типа при различных фиксированных управляющих напряжениях Uзи. Графики отображают зависимость тока стока (Ic) от напряжения сток – исток (Uси). На каждой из этих кривых присутствуют 3 характерные области:

1. Сильная зависимость тока Ic от напряжения Uси (участок до штрих - пунктирной линии). Эта часть определяет период насыщения канала до напряжения Uси нас, при котором транзистор переходит в закрытое (открытое) состояние. Чем выше управляющее напряжение смещения Uзи, тем раньше закроется (откроется) полевой транзистор.

2. Слабая зависимость тока Ic, когда канал насыщается до своего максимального значения и переходит в постоянно закрытое (открытое) состояние.

3. В момент, когда напряжение Uси превышает предельно допустимое для полевого транзистора, наступает необратимый электрический пробой p-n перехода. Полевой транзистор при этом выходит из строя.

Сток-затворная характеристика показывает зависимость Ic от напряжения между затвором и истоком.

Напряжение на затворе, при котором ток стока стремится к нулю, является очень важной характеристикой полевого транзистора. Оно соответствует напряжению запирания прибора по цепи затвора и называется напряжением запирания или напряжением отсечки.


Условные графические изображения полевых транзисторов в электрических схемах выглядят следующим образом.

Где полевой транзистор:

а – с p-n переходом и p-каналом;

б - с p-n переходом и n-каналом;

в – со встроенным p-каналом обедненного типа;

г – со встроенным n-каналом обедненного типа;

д – с индуцированным p-каналом обогащенного типа;

е – с индуцированным n-каналом обогащенного типа;

ж – p-типа (в) и выводом от подложки;

з – p-типа (д) и выводом от подложки

Европейское обозначение контактов: gate – затвор, drain – сток, source – исток, tab – подложка (зачастую в неизолированных транзисторах является стоком).

Основные технические характеристики полевого транзистора

Современные полевые транзисторы характеризуются основными характеристиками, температурными характеристиками и электрическими характеристиками при температуре до +25 градусов на подложке (истоке). Кроме того, существуют статические и динамические характеристики полевых транзисторов, определяющие максимальные показатели при их применении в частотных сигналах. На частотные характеристики следует обращать особое внимание при использовании транзисторов в генераторах, модуляторах, импульсных блоках питания, современных цифровых усилителях класса D и выше. Частотные свойства определяются постоянной времени RC-цепи затвора, определяющей скорость запирания / отпирания канала. У полевых транзисторов с изолированным затвором (МОП и МДП) входная емкость значительно меньше полевых транзисторов с p-n переходом, что дает возможность применять их в высокочастотной аппаратуре.

К основным характеристикам полевых транзисторов относятся:

Vds (Vdss) или Uси max – определяет максимально допустимое значение напряжения между истоком и стоком;

Id или Ic – максимально допустимый ток стока, проходящий через открытый канал транзистора;

Rdc(on) – сопротивление канала между затвором и истоком (обычно указывается совместно с управляющим напряжением Uзи или Vgs).

Iз ут или Igss – ток утечки затвора при заданном напряжении между затвором и остальными выводами, замкнутыми между собой.

Pd или Pmax – максимальная рассеиваемая мощность транзистора при температуре, как правило, +25 градусов.

Тепловые параметры полевого транзистора определяют устойчивость его характеристик при работе в диапазоне температур, так как при изменении температуры свойства полупроводниковых материалов изменяются. От температуры сильно зависит значение Ic , крутизны и тока утечки затвора.

Tj или Тmax – температура разрушения кристалла подложки, соответствующая максимально допустимой рабочей температуре

Tstg или Тmin – минимальная отрицательная температура, при которой соблюдаются основные паспортные параметры транзистора

Отличительной особенностью работы полевых транзисторов в сравнении с биполярными является очень низкий коэффициент шума или Кш. Данный коэффициент мало влияет от напряжений сток – исток, тока стока, а так же температуры работы транзистора (до +50 градусов).

1. Не рекомендуется снижать температуру полевых транзисторов во время их работы ниже -5 градусов, а так же выходи за пределы рабочей температуры +60 +70 градусов (в народе - температура удержания пальца).
2. Во время эксплуатации необходимо выбирать рабочие напряжения и токи, которые не будут превышать 70% от максимально допустимых параметров по паспорту (даташиту).
3. Нельзя использовать транзисторы в максимальных режимах по двум параметрам одновременно.
4. Не допускать работу транзистора с отключенным затвором.
5. На затвор полевых транзисторов с p-n переходом нельзя подавать напряжение, смещающее переход в прямом направлении. Для p-канальных это будет отрицательное напряжение, для n-канальных – положительное.
6. Хранение полевых МОП и МДП транзисторов желательно производить с закороченными выводами. Маломощные транзисторы частотные транзисторы этой структуры выходят из строя от статического напряжения.
7. Проверить исправность полевого транзистора электронным тестером можно по аналогии с этим видео http://www.youtube.com/watch?v=jQ6l6C8LMSw

Loading...Loading...