Схема простого блока питания с регулировкой напряжения. Простой блок питания

Сегодня мы соберем лабораторный блок питания своими руками. Разберемся в устройстве блока, подберем правильные компоненты, научимся правильно паять, собирать элементы на печатные платы.

Это — высококачественный лабораторный (и не только) блок питания с переменным регулируемым напряжением от 0 до 30 вольт. Цепь также включает электронный ограничитель по току на выходе, который эффективно регулирует выходной ток 2 мА из максимально возможного в этой цепи (3 А). Данная характеристика делает этот блок питания незаменимым в лаборатории, так как она дает возможность регулировать мощность, ограничивать максимальный ток, который подключаемое устройство может потреблять, без боязни ее повреждения, если что-то пойдет не так.
Есть также визуальный признак того, что этот ограничитель действует (светодиод), чтобы Вы могли видеть, что ваша цепь превышает допустимые пределы.

Принципиальная схема лабораторного блока питания представлена ниже:

Технические характеристики лабораторного блока питания

Входное напряжение: ……………. 24 В- переменного тока;
Входной ток: ……………. 3 А (макс.);
Выходное напряжение: …………. 0-30 В — регулируемое;
Выходной ток: …………. 2 мА -3 А- регулируемый;
Пульсация выходного напряжения: …. 0,01% максимум.

Особенности

— Небольшой размер, легко сделать, простая конструкция.
— Выходное напряжение легко регулируется.
— Ограничение выходного тока с визуальной индикацией.
— Защита от перегрузки и неправильного подключения.

Принцип работы

Начнем с того, что для лабораторного блока питания используется трансформатор с вторичной обмоткой 24В/3А, который подключается через входные зажимы 1 и 2 (качество выходного сигнала пропорционально качеству трансформатора). Напряжение переменного тока с вторичной обмотки трансформатора выпрямляется диодным мостом, сформированным диодами D1-D4. Пульсации выпрямленного напряжения DC на выходе диодного моста сглаживает фильтр, образованный резистором R1 и конденсатором С1. Цепь имеет некоторые особенности, которые делают этот блок питания отличным от других блоков этого класса.

Вместо использования обратной связи для управления выходным напряжением, в нашей цепи используется операционный усилитель, чтобы обеспечивать необходимое напряжение для стабильной работы. Это напряжение падает на выходе U1. Цепь работает благодаря зенеровскому диоду D8 — 5.6 V, который здесь работает при нулевом температурном коэффициенте тока. Напряжение на выходе U1 падает на диоде D8 включая его. Когда это происходит цепь стабилизируется также напряжение диода (5.6) падает на резисторе R5.

Ток который течет через опер. усилитель изменяется незначительно, а значит тот же ток будет течь через резисторы R5, R6, и так как оба резистора имеют одинаковую величину напряжения, то общее напряжение будет суммироваться как при их последовательном соединении. Таким образом напряжение, полученное на выходе опер. усилителя будет равно 11.2 вольт. Цепь с опер. усилителем U2 имеет постоянный коэффициент усиления приблизительно равный 3,согласно формуле A=(R11+R12)/R11 увеличивает напряжения 11.2 вольт приблизительно до 33 вольт. Триммер RV1 и резистор R10 использованы для установки выходных параметров напряжения, чтобы оно не уменьшилось до 0 вольт, независимо от величины других компонентов в цепи.

Другая очень важная характеристика цепи — это возможность получить максимальный выходной ток, который можно получить из p.s.u. Чтобы сделать это возможным напряжение падает на резисторе (R7), который связан последовательно с нагрузкой. IC отвечающий за эту функцию цепи — U3. Инвертированный сигнал на вход U3 равный 0 вольт подается через R21. В то же самое время, не изменяя сигнала того же самого IC можно задать любое значение напряжения посредством P2. Допустим, что для данного выхода напряжение равно несколько вольт, P2 установлен так, чтобы на входе IC был сигнал в 1 вольт. Если нагрузку усилить выходное напряжение будет постоянным и наличие R7 последовательно соединенного с выходом будет иметь незначительный эффект из-за своей низкой величины и из-за своей позиции за пределами цикла обратной связи управляющей цепи. Пока нагрузка и выходное напряжение постоянны цепь стабильно работает. Если нагрузку увеличить, чтобы напряжение на R7 было больше, чем 1 вольт, U3 включен и стабилизируется в исходные параметры. U3 работает не изменяя сигнал к U2 через D9. Таким образом напряжение через R7 постоянно и не увеличивается выше заданной величины (1 вольт в нашем примере) уменьшая выходное напряжение цепи. Это под силу устройству — поддерживать выходной сигнал постоянным и точным, что дает возможность получать на выходе 2 mA.

Конденсатор C8 делает цепь более устойчивой. Q3 необходим для управления LED всякий раз, когда вы используете индикатор ограничителя. Чтобы сделать это возможным для U2 (изменял выходное напряжение вплоть до 0 вольт) необходимо обеспечить отрицательную связь, которая делается посредством цепи C2 и C3. Та же отрицательная связь использована для U3. Отрицательное напряжение подается стабилизируясь посредством R3 и D7.

Для избежания неконтролируемых ситуаций есть своеобразная цепь защиты, построенная вокруг Q1. IC имеет внутреннюю защиту и не может быть поврежден.

U1- источник опорного напряжения, U2 — регулятор напряжения, U3 — стабилизатор тока.

Конструкция блока питания.

Прежде всего, давайте рассмотрим основы в построении электронных цепей на печатных платах — основы любого лабораторного блока питания. Плата сделана из тонкого изоляционного материала покрытого тонким проводящим слоем меди, которая формируется таким образом, чтобы элементы цепи можно было соединить проводниками как показано на принципиальной схеме. Необходимо правильно спроектировать печатную плату для избежания неправильной работы устройства. Для защиты платы в дальнейшем от окисления и сохранения ее в отличном состоянии ее необходимо покрыть специальным лаком, который защищает от окисления и облегчает пайку.
Пайка элементов в плату — единственный способ собрать лабораторный блок питания качественно и от того как вы это сделаете, будет зависеть успех вашей работы. Эта не очень сложно, если вы будете следовать нескольким правилам и тогда у вас не будет никаких проблем. Мощность паяльника, который вы используете, не должна превышать 25 Ватт. Жало должно быть тонким и чистым на протяжении всей работы. Для этого есть влажная своеобразная губка и время от времени вы можете очищать горячее жало, чтобы удалить все остатки, которые накапливаются на нем.

  • НЕ пытайтесь очистить напильником или наждачной бумагой грязное или изношенное жало. Если оно не может быть очищено, замените его. На рынке есть много разнообразных паяльников, и вы также можете купить хороший флюс, чтобы получить хорошее соединение элементов во время пайки.
  • НЕ используйте флюс если вы пользуетесь припоем, который уже содержит его. Большое количество флюса — одна из основных причин сбоя цепи. Если тем не менее вы должны использовать дополнительный флюс как при лужении медных проводов, необходимо очистить рабочую поверхность после окончания работы.

Для того, чтобы припаять элемент правильно, вы должны делать следующее:
— Зачищать выводы элементов наждачной бумагой (желательно с небольшим зерном).
— Сгибать выводы компонентов на правильном расстоянии от выхода из корпуса для удобного расположения на плате.
— Вы можете встретить элементы, выводы которых толще, чем отверстия в плате. В этом случае необходимо немного расширить отверстия, но не делайте их слишком большими – это затруднит пайку.
— Вставить элемент необходимо так, чтобы его выводы немного выступали от поверхности платы.
— Когда припой расплавится, он равномерно растечется по всей области вокруг отверстия (добиться этого можно при правильной температуре паяльника).
— Пайка одного элемента должна быть не более 5 секунд. Удалите излишки припоя и дождитесь пока припой на плате остынет естественно (не дуя на него). Если все сделали правильно, поверхность должна иметь яркий металлический оттенок, края должны быть гладкими. Если припой выглядит тусклыми, с трещинами, или имеет форму капли, то это называется сухой пайкой. Вы должны удалить его и сделать все снова. Но будьте осторожны, чтобы не перегреть дорожки, иначе они будут отставать от платы и легко ломаться.
— Когда вы паяете чувствительный элемент, необходимо держать его металлическим пинцетом или щипцами, которые будут поглощать лишнее тепло, чтобы не сжечь элемент.
— Когда вы завершаете вашу работу, обрежьте избыток от выводов элемента и можете очистить плату спиртом, чтобы удалить все остатки флюса.

Перед началом сборки блока питания необходимо найти все элементы и разделить их по группам. Для начала установите гнёзда для ICs и выводы для внешних связей и припаяйте их на свои места. Затем резисторы. Не забудьте разместить R7 на определенном расстоянии от печатной платы так как он очень сильно нагревается, особенно когда течет большой ток, и это может повредить её. Это также рекомендуется сделать для R1. затем размещайте конденсаторы не забывая про полярность электролитического и наконец припаивайте диоды и транзисторы, но будьте осторожны, чтобы не перегреть их и припаять их так как показано на схеме.
Установите силовой транзистор в heatsink. Чтобы сделать это необходимо следить за диаграммой и не забывать использовать изолятор (слюда) между телом транзистора и heatsink и специальное очищающее волокно, чтобы изолировать винты от heatsink.

Подсоедините изолированный провод к каждому выводу, будьте осторожны, чтобы сделать хорошее качественное соединение, так как здесь течет большой ток, особенно между эмиттером и коллектором транзистора.
Также при сборке блока питания неплохо было бы прикинуть где какой элемент будет находиться, для того, чтобы вычислить длину проводов, которые будут между PCB и потенциометрами, силовым транзистором и для входной и выходной связей.
Соедините потенциометры, LED и силовой транзистор и подключайте две пары концов для входной и выходной связей. Убедитесь по диаграмме, что вы все делаете правильно, старайтесь ни чего не перепутать, так как в цепи 15 внешних связей и допустив ошибку ее потом сложно будет найти. Также было бы неплохо использовать провода разных цветов.

Печатная плата лабораторного блока питания, ниже будет ссылка на скачивание печатки в формате.lay:

Схема расположения элементов на плате блока питания:

Схема соединения переменных резисторов (потенциометров) для регулирования выходного тока и напряжения, а также соединение контактов силового транзистора блока питания:

Обозначение выводов транзисторов и операционного усилителя:

Обозначение клемм на схеме:
— 1 и 2 к трансформатору.
— 3 (+) и 4 (-) ВЫХОД DC.
— 5, 10 и 12 на P1.
— 6, 11 и 13 на P2.
— 7 (E), 8 (B), 9 (E) к транзистору Q4.
— LED нужно установить на внешней стороне платы.

Когда все внешние связи сделаны необходимо проверить плату и почистить ее, чтобы удалить остатки припоя. Убедитесь, что нет соединения между смежными дорожками которое может привести к короткому замыканию и если все хорошо — подсоедините трансформатор. И подключите вольтметр.
НЕ КАСАЙТЕСЬ ЛЮБОГО УЧАСТКА ЦЕПИ ПОКА ОН ПОД НАПРЯЖЕНИЕМ.
Вольтметр должен показывать напряжение от 0 до 30 вольт в зависимости от того, в каком положении P1. Поворот P2 против часовой стрелки должен включать LED, показывая, что наш ограничитель работает.

Список элементов.

R1 = 2,2 кОм 1W
R2 = 82 Ом 1/4W
R3 = 220 Ом 1/4W
R4 = 4,7 кОм 1/4W
R5, R6, R13, R20, R21 = 10 кОм 1/4W
R7 = 0,47 Ом 5W
R8, R11 = 27 кОм 1/4W
R9, R19 = 2,2 кОм 1/4W
R10 = 270 кОм 1/4W
R12, R18 = 56кОм 1/4W
R14 = 1,5 кОм 1/4W
R15, R16 = 1 кОм 1/4W
R17 = 33 Ом 1/4W
R22 = 3,9 кОм 1/4W
RV1 = 100K триммер
P1, P2 = 10KOhm линейный потенциометр
C1 = 3300 uF/50V электролитический
C2, C3 = 47uF/50V электролитический
C4 = 100нФ полиэстр
C5 = 200нФ полиэстр
C6 = 100пФ керамический
C7 = 10uF/50V электролитический
C8 = 330пФ керамический
C9 = 100пФ керамический
D1, D2, D3, D4 = 1N5402,3,4 диод 2A — RAX GI837U
D5, D6 = 1N4148
D7, D8 = 5,6V зенеревский
D9, D10 = 1N4148
D11 = 1N4001 диод 1A
Q1 = BC548, NPN транзистор или BC547
Q2 = 2N2219 NPN транзистор — (Заменяют на КТ961А — все работает)
Q3 = BC557, PNP транзистор или BC327
Q4 = 2N3055 NPN силовой транзистор (заменить на КТ 827А )
U1, U2, U3 = TL081, опер. усилитель
D12 = LED диод

В итоге я самостоятельно собрал лабораторный блок питания, но столкнулся на практике с тем, что считаю нужным подправить. Ну во первых это силовой транзистор Q4 = 2N3055 его нужно в срочном порядке вычеркнуть и забыть. Не знаю как других устройствах, но в данном регулируемом блоке питания он не подходит. Дело в том, что данный тип транзисторов выходит из строя моментально при коротко замыкании и ток в 3 ампера не тянет совершенно!!! Я не знал в чем дело пока не поменял его на наш родной совковый КТ 827 А . После установки на радиатор я и горя не знал и больше не возвращался к этому вопросу.

Что же касается остальной схемотехники и деталей, то трудностей нет. За исключением трансформатор — мотать пришлось. Ну это чисто из-за жадности, пол ведра их стоит в углу — не покупать же =))

Ну и чтобы не нарушать старую добрую традицию, я выкладываю результат своей работы на общий суд 🙂 пришлось по шаманить с колонкой, но в целом получилось не дурно:

Собственно лицевая панель — вынес потенциометры в левую часть в правой разместились амперметр и вольтметр + светодиод красного цвета, для индикации ограничения по току.

На следующей фотографии вид сзади. Тут я хотел показать способ монтажа кулера с радиатором от материнской платы. На этот радиатор с обратной стороны примостился силовой транзистор.

Вот и он, силовой транзистор КТ 827 А. Смонтирован на заднюю стенку. Пришлось просверлить отверстия под ножки, смазать все контактные части теплопроводной пастой и закрепить на гайки.

Вот они….внутренности! Собственно все в куче!

Немного крупнее внутрь корпуса

Лицевая панель с другой стороны

Поближе, тут видно как смонтирован силовой транзистор и трансформатор.

Плата блока питания сверху; тут я схитрил и транзисторы маломощные упаковал снизу платы. Тут их не видно, так что не удивляйтесь если не найдете их.

Вот и трансформатор. Перемотал на 25 вольт выходного напряжения ТВС-250 Грубо, кисло, не эстетично зато все работает как часы =) Вторую часть не использовал. Оставил место для творчества.

Ну вот как-то так. Немного творчества и терпения. Блок работает замечательно уже 2 год. Для написания данный статьи мне пришлось его разобрать и заново собрать. Это просто ужас! Но все для вас, дорогие читатели!

Конструкции наших читателей!









R3 10k (4k7 – 22k) reostat

R6 0.22R 5W (0,15- 0.47R)

R8 100R (47R – 330R)

C1 1000 x35v (2200 x50v)

C2 1000 x35v (2200 x50v)

C5 100n ceramick (0,01-0,47)

T1 KT816 (BD140)

T2 BC548 (BC547)

T3 KT815 (BD139)

T4 KT819(КТ805,2N3055)

T5 KT815 (BD139)

VD1-4 КД202 (50v 3-5A)

VD5 BZX27 (КС527)

VD6 АЛ307Б, К (RED LED)

Регулируемый стабилизированный блок питания – 0-24 V , 1 – 3А

с ограничением тока.

Блок питания (БП) предназначен для получения регулируемого стабилизированного выходного напряжения от 0 до 24v при токе порядка 1-3А, проще говоря чтобы не покупали вы батарейки, а использовали его для эксперементов со своими конструкциями.

В блоке питания предусмотрена так называемая защита т е ограничение максимального тока.

Для чего это нужно? Для того что бы этот БП служил верой и правдой, не боясь коротких замыканий и не требовал ремонта, так сказать «несгораемый и неубиваемый»

На Т1 собран стабилизатор тока стабилитрона, т е имеется возможность установки практически любого стабилитрона с напряжением стабилизации менее входного напряжения на 5 вольт

Это значит, что при установке стабилитрона VD5 допустим ВZX5,6 или КС156 на выходе стабилизатора получим регулируемое напряжение от 0 до приблизительно 4 вольт, соответственно - если стабилитрон на 27 вольт, то максимальное выходное напряжение будет в пределах 24-25 вольт.

Трансформатор следует выбирать примерно так- переменное напряжение вторичной обмотки должно быть примерно на 3-5 вольт больше того, которое вы рассчитываете получить на выходе стабилизатора, которое в свою очередь зависит от установленного стабилитрона,

Ток вторичной обмотки трансформатора как минимум должен быть не менее того тока, который нужно получить на выходе стабилизатора.

Выбор конденсаторов по емкости С1 и С2 –примерно по 1000-2000 мкф на 1А, С4 – 220 мкф на 1А

Несколько сложнее с емкостями по напряжению – рабочее напряжение грубо рассчитывается по такой методике – переменное напряжение вторичной обмотки трансформатора делится на 3 и умножается на 4

(~ Uвх:3×4)

Т е – допустим, что выходное напряжение вашего трансформатора порядка 30 вольт – 30 делим на 3 и множим на 4 – получаем 40 – значит рабочее напряжение конденсаторов должно быть более чем 40 вольт.

Уровень ограничения тока на выходе стабилизатора зависит от R6 по минимуму и R8 (по максимуму вплоть до отключения)

При установке перемычки вместо R8 между базой VТ5 и эмиттером VТ4 при сопротивлении R6 равном 0,39 ом ток ограничения будет примерно на уровне 3А,

Как понять «ограничение»? Очень просто – выходной ток даже в режиме короткого замыкания на выходе не превысит 3 А, за счет того что выходное напряжение будет автоматически снижено практически до нуля,

А можно ли заряжать автомобильный аккумулятор? Запросто. Достаточно выставить регулятором напряжения, извиняюсь - потенциометром R3 напряжение 14,5 вольта на холостом ходу (т е с отключенным аккумулятором) а потом подключить к выходу блока, аккумулятор, И пойдет ваш аккумулятор заряжаться стабильным током до уровня 14,5в, Ток по мере зарядки будет уменьшаться и когда достигнет значения 14,5 вольта (14,5 в – напряжение полностью заряженного акк) он будет равен нулю.

Как отрегулировать ток ограничения. Выставить на выходе стабилизатора напряжение на холостом ходу порядка 5-7 вольт. Затем к выходу стабилизатора подключить сопротивление примерно на 1 ом мощностью 5-10 ватт и последовательно с ним амперметр. Подстроечным резистором R8 выставить требуемый ток. Правильно выставленный ток ограничения можно проконтролировать выкручивая потенциометр регулировки выходного напряжения на максимум до упора При этом ток, контролируеммый амперметром должен оставаться на прежнем уровне.

Теперь про детали. Выпрямительный мостик – диоды желательно выбирать с запасом по току минимум раза в полтора, Указанные КД202 диоды могут без радиаторов достаточно долго работать при токе 1 ампер, но ежели рассчитываете что вам этого мало, то установив радиаторы можно обеспечить 3-5 ампер, вот только нужно посмотреть в справочнике какие из них и с какой буквой могут до 3 а какие и до 5 ампер. Хочется больше – загляните в справочник и выбирайте диоды помощнее, скажем ампер на 10.

Транзисторы – VT1 и VT4 устанавливать на радиаторы. VT1 будет слегка греться поэтому и радиатор нужен небольшой, а вот VT4 да в режиме ограничения тока будет греться довольно таки хорошо. Поэтому и радиатор нужно подобрать внушительный, можно и вентилятор от блока питания компьютера к нему приспособить – поверьте, не помешает.

Особо пытливым – почему греется транзистор? Ток то течет по нему и чем больше ток, тем больше греется транзистор. Давайте посчитаем – на входе, на конденсаторах 30 вольт. На выходе стабилизатора ну скажем вольт так 13, В итоге между коллектором и эмиттером остается 17 вольт.

Из 30 вольт минусуем 13 вольт получаем 17 вольт (кто хочет видит тут математику, а мне как то на память приходит один из законов дедушки Киргофа, про сумму падений напряжения)

Ну так вот, тот же Киргоф, что то говорил о токе в цепи, наподобие того что какой ток течет в нагрузке, такой же ток и через транзистор VT4 течет. Скажем ампера эдак 3 течет, резистор в нагрузке греется транзистор тоже греется, Так вот тепло это, которым воздух греем и можно назвать мощностью, которая рассеивается... Но попробуем выразиться математически, то бишь

школьный курс физики

где Р - это мощность в ваттах, U – напряжение на транзисторе в вольтах, а J - ток который течет и через нашу нагрузку и через амперметр и естественно через транзистор.

Итак 17 вольт множим на 3 ампера получаем 51 ватт рассеивающийся на транзисторе,

Ну а допустим подключим сопротивление на 1 ом. По закону Ома при токе 3А падение напряжения на резисторе получится 3 вольта и рассеиваемая мощность величиной в 3 ватта начнет греть сопротивление. Тогда падение напряжения на транзисторе: 30 вольт минус 3 вольта = 27 вольт, а мощность рассеиваимая на транзисторе 27v×3A=81 ватт... Теперь заглянем в справочник, в раздел транзисторы. Ежели проходной транзистор т е VТ4 у нас стоит скажем КТ819 в пластмассовом корпусе то по справочнику выходит что он не выдержит т к мощность рассеивания (Рк*max) у него 60 ватт, но зато в металлическом корпусе (КТ819ГМ, аналог 2N3055) – 100 ватт – вот этот подойдет, но радиатор обязателен.

Надеюсь на счет транзисторов более менее понятно, перейдем к предохранителям. Вообще то предохранитель это последняя инстанция, реагирующая на грубые ошибки допущенные вами и «ценой своей жизни» предотвращающая.... Давайте допустим что в первичной обмотке трансформатора по каким то причинам произошло замыкание,или во вторичной. Может от того что перегрелся, может изоляция прохудилась, а может и просто – неправильное соединение обмоток, но предохранителей нет. Трансформатор дымит, изоляция плавится,сетевой провод пытаясь выполнить доблестную функцию предохранителя, горит и не дай бог если на распределительном шите вместо автомата у вас стоят пробоки с гвоздиками вместо предохранителей.

Один предохранитель на ток примерно на 1А больше чем ток ограничения блока питания (т е 4-5А), должен стоять между диодным мостом и трансформатором, а второй между трансформатором и сетью 220 вольт примерно на 0,5-1 ампер.

Трансформатор. Самое пожалуй дорогое в конструкции Грубо говоря чем массивнее трансформатор тем он мощнее. Чем толще провод вторичной обмотки, тем больший ток может отдать трансформатор. Все это сводится к одному – мощности трансформатора. Так как же выбрать трансформатор? Опять школьный курс физики, раздел электротехника.... Опять 30 вольт, 3 ампера и в итоге мощность 90 ватт. Это минимум, который следует понимать так – этот трансформатор кратковременно может обеспечить выходное напряжение 30 вольт при токе 3 ампера, Поэтому желательно накинуть по току запас минимум процентов 10, а лучше все 30-50 процентов. Так что 30 вольт при токе 4-5 ампер на выходе трансформатора и ваш БП сможет часами если не сутками отдавать ток 3 ампера в нагрузку.

Ну и тем кто желает получть максимум по току от этого БП, скажем ампер эдак 10.

Первое – соответствующий вашим запросам трансформатор

Второе – диодный мост ампер на 15 и на радиаторы

Третье – проходной транзистор заменить на два-три соединенных в параллель с сопротивлениями в эмиттерах по 0,1 ом (радиатор и принудительный обдув)

Четвертое- емкости желательно конечно увеличить, но в том случае если БП будет использоваться как зарядное устройство – это не критично.

Пятое – армировать токопроводящие дорожки по пути следования больших токов напайкой дополнительных проводников и соответственно не забывать про соединительные провода «потолще»


Схема подключения запараллеленных транзисторов вместо одного




Этот блок питания на микросхеме LM317, не требует каких – то особых знаний для сборки, и после правильного монтажа из исправных деталей, не нуждается в наладке. Несмотря на свою кажущуюся простоту, этот блок является надёжным источником питания цифровых устройств и имеет встроенную защиту от перегрева и перегрузки по току. Микросхема внутри себя имеет свыше двадцати транзисторов и является высокотехнологичным устройством, хотя снаружи выглядит как обычный транзистор.

Питание схемы рассчитано на напряжение до 40 вольт переменного тока, а на выходе можно получить от 1.2 до 30 вольт постоянного, стабилизированного напряжения. Регулировка от минимума до максимума потенциометром происходит очень плавно, без скачков и провалов. Ток на выходе до 1.5 ампер. Если потребляемый ток не планируется выше 250 миллиампер, то радиатор не нужен. При потреблении большей нагрузки, микросхему поместить на теплопроводную пасту к радиатору общей площадью рассеивания 350 – 400 или больше, миллиметров квадратных. Подбор трансформатора питания нужно рассчитывать исходя из того, что напряжение на входе в блок питания должно быть на 10 – 15 % больше, чем планируете получать на выходе. Мощность питающего трансформатора лучше взять с хорошим запасом, во избежание излишнего перегрева и на вход его обязательно поставить плавкий предохранитель, подобранный по мощности, для защиты от возможных неприятностей.
Нам, для изготовления этого нужного устройства, потребуются детали:

  • Микросхема LM317 или LM317T.
  • Выпрямительная сборка почти любая или отдельные четыре диода на ток не менее 1 ампер каждый.
  • Конденсатор C1 от 1000 МкФ и выше напряжением 50 вольт, он служит для сглаживания бросков напряжения питающей сети и, чем больше его ёмкость, тем более стабильным будет напряжение на выходе.
  • C2 и C4 – 0.047 МкФ. На крышке конденсатора цифра 104.
  • C3 – 1МкФ и больше напряжением 50 вольт. Этот конденсатор, так же можно применить большей ёмкости для повышения стабильности выходящего напряжения.
  • D5 и D6 – диоды, например 1N4007, или любые другие на ток 1 ампер или больше.
  • R1 – потенциометр на 10 Ком. Любого типа, но обязательно хороший, иначе выходное напряжение будет «прыгать».
  • R2 – 220 Ом, мощностью 0.25 – 0.5 ватт.
Перед подключением к схеме питающего напряжения, обязательно проверьте правильность монтажа и пайки элементов схемы.

Сборка регулируемого стабилизированного блока питания

Сборку я произвел на обычной макетной платы без всякого травления. Мне этот способ нравится из-за своей простоты. Благодаря ему схему можно собрать за считанные минуты.






Проверка блока питания

Вращением переменного резистора можно установить желаемое напряжение на выходе, что очень удобно.

Для тех у кого радиолюбительство является хобби просто обязан собрать и опробывать блок питания с плавной регулировкой напряжения. Данная подборка состоит только из простых, но надежная схем регулируемых блоков питания.

Самая простейшая схема самодельного блока питания постоянного тока, состоит из трех основных функциональных узлов - это понижающий трансформатор , диодный выпрямитель и сглаживающий конденсаторный фильтр . В зависимости от номинальной мощности БП и эти узлы будут иметь разные габариты и типы. Основный и наиболее дорогой частью является , который понижает сетевое переменное напряжения до необходимых номиналов. Прежде чем его выбрать, определитесь с электрической мощностью, которая необходима. Для этого напряжение перемножите на силу тока нагрузки, плюс оставьте небольшой запас мощности примерно на 20-30%.

Допустим, у вас имеется старый трансформатор, убедитесь, что его первичка рассчитана на 220 воль. Подксоедините его к сети и мультиметром измерите напряжение на вторичной обмотке. Если оно выше, чем Вам необходимо, то можете отмотать пару витков вторички и опять замерить, напряжение должно немного снизится. Учтите, что напряжение с вторичной обмотки увеличится в 1,41 раза после диодного моста и конденсатора.

Роль диодного моста заключается в выпрямлении переменного напряжения. Подойдут абсолютно любые диоды, которые рассчитаны на напряжение и ток больше тех, которые Вам потребуются. Не забудьте предварительно на пригодность, так как даже один пробитый диод приведёт к тому, что БП будет работать не правильно.

На выходе моста в схеме имеется , роль которого сглаживать пульсирующее напряжение. То есть, с диодного моста блока питания, выходит постоянное напряжение, но оно имеет вид импульсных скачков. Для многих устройств это не подойдёт, и вызовет их поломку. А конденсатор, накапливая часть энергии, заполняет провалы напряжения, тем самым на выходе БП относительно ровный электрический ток.

Блок питания на стабилизированное регулиремое напряжение 1,5 - 24 В с током до 3А

Основой схемы универсального блока питания для радиолюбителей является стабилизатор напряжения на микросхема . В качестве силового трансформатора применен накальный трансформатор ТН-56, имеющий четыре вторичные обмотки с напряжением 6,3 В. В зависимости от необходимого уровня выходного напряжения, с помощью переключателя SA2 подключаем нужное нам число вторичных обмоток.

Переменное напряжение с вторичных обмоток трансформатора через предохранитель FU2 поступает на диодный мосто VD1-VD4. Конденсатор С5 используется для сглаживания пульсаций. Транзисторы VT1, VT2 предназначены для увеличения выходной мощности. Регулировать выходное напряжение мы будем переменными резисторами R4 и R3 .

Транзистор VT1 должен быть установлен на радиатор, при необходимости, его можно заменить на КТ803А, КТ808А, а VT2 может быть заменён на КТ816Г. В качестве диодов VD1 VD4 можно применить КД206А, КД202А, но их также желательно установить на радиатор. Правильно собранная схема блока питания начинает работать сразу.

Регулируемый блок питания с напряжением до 24 В и с выходным током до 5А

В этой схеме, в случае короткого замыкания в нагрузке сработает защита реализованная способом ограничения максимального тока.

Изменением сопротивления переменного резистора R8 задаем требуемый ток. Все транзисторы необходимо установить на радиаторы.

Микросхема LM 2576-ADJ представлена в стандартном включении. Конденсаторы С1 и С4 можно использовать 0,1 до 1 мкф, С2, С3 1000 мкф, 63 Вольта, С5, С6 1000 мкф, 40в.


Я думаю по схеме и печатной плате и так все понятно. Вопрос может остаться только по изготовлению дросселя т.к в описание к микросхеме указана только индуктивность 100-300 мкГн.

В качестве сердечника для дросселя я применил ферритовое кольцо от неисправного компьютерного блока питания.

Новую обмотку я намотал шестью отрезками провода ПЭВ-0,35 длиной по 2,5 метра, концы зачистил и спаял между собой с обоих сторон.

Loading...Loading...