Arduino металлоискатель с дискриминацией. Металлоискатель в виде перчатки на базе Arduino

Его особенность заключается в том, что устройство выполнено в виде перчатки, здесь находится и электронная часть, и поисковая катушку. Металлоискатель был создан для поиска дома потерявшихся мелких металлических вещей, к примеру, сережек, колец и прочего. Впрочем, на основе этой схемы можно сделать и классический металлоискатель для работ на улице. Для изготовления устройства понадобится минимум материалов, львиную долю задач решает микроконтроллер Arduino.

Мощность металлоискателя небольшая, но для бытовых целей ее вполне хватит.


Материалы и инструменты для изготовления:
- микроконтроллер Arduino UNO;
- провод 28 калибра (диаметр 0.32мм);
- один переключатель;
- пьезозуммер;
- два резистора на 10К;
- один резистор на 1.2К;
- два конденсатора 100n;
- два конденсатора 22n;
- один транзистор типа BC547;
- батарея на 9В;
- строительные перчатки.

Также будет необходима фанера, клей по дереву, паяльник с припоем, многожильный провод, макетная плата и другие мелочи.

Процесс изготовления металлоискателя:

Шаг первый. Изготовление катушки
Чтобы изготовить катушку, для нее нужно вырезать основу, корпус. Автор вырезает катушку из фанеры на станке, ее диаметр составляет 6 дюймов. В итоге получается два кольца, которые впоследствии склеиваются столярным клеем. После высыхания, катушку тщательно обрабатывают наждачной бумагой, чтобы она была гладкой. После того, как основа будет изготовлена, на нее можно наматывать провод. Всего нужно сделать 30 витков провода, оставив конец длиной не менее 5-ти дюймов для подключения. Наматывать провод нужно плотно, это обеспечит качественную работу катушки. Поверх провода катушку можно обмотать изолентой или скотчем для лучшей фиксации.





Шаг второй. Сборка схемы на макете
Чтобы убедиться в том, что катушка собрана верно и вся система правильно работает, ее сперва нужно собрать на макетной плате, а уже потом спаивать. Порядок подключения не принципиален, автор начал с транзистора, потом пошли резисторы и конденсаторы. После этого были подключены «мужские и женские» разъемы на палате Arduino.












После этого можно подключать катушку. Так как провод имеет лаковое покрытие, его нужно соскоблить на концах наждачной бумагой или острым ножом. Нужно добиться хорошего контакта. Подключается катушка с помощью «мужских и женских» разъемов. После сборки всех элементов в контроллер можно загружать прошивку и проверять, как все работает на деле.

Шаг третий. Установка прошивки и проверка системы
Далее нужно загрузить в контроллер прошивку. Также возможно понадобится произвести некоторые настройки в коде, чтобы металлоискатель работал правильно. Как только код будет загружен, можно приступать к тестированию. К системе нужно подключить источник питания 9В и выключить переключатель. Если металлоискатель работает, можно приступать к спайке всех элементов на плате.


Шаг четвертый. Спайка схемы
Собирается все на куске текстолита, контакты спаиваются между собой с помощью кусочков провода. При необходимости можно сделать для устройства специальную плату методом травления. Более подробно увидеть, как происходит сборка схемы, можно увидеть на фото.





Шаг пятый. Завершающий этап сборки
Чтобы закрепить плату автор использует кусок фанеры. По размеру он должен быть таким, чтобы на него поместился контроллер Arduino и печатная плата. Края нужно обработать наждачной бумагой, чтобы сделать их гладкими. Для того чтобы приклеить элементы к фанере, можно использовать двусторонний скотч. Также подойдет клей и любые другие способы крепления.

Металлодетектор для поиска старинных кладов или просто цветного металла можно без труда купить в интернете. Но люди, немного знакомые с электроникой, также могут сами собрать прибор для собственных нужд.

Правда, часто схемы включают слишком много компонентов, или прибор имеет слабую чувствительность. Неплохой вариант металлоискателя можно получить, собрав его на базе микроконтроллера Ардуино. Он реагирует даже на мелкие монеты, работает стабильно независимо от температуры воздуха и батарейки.

Минус в том, что индукционный металлоискатель не сможет определять вид металла, как это делает прибор с радиоизлучением в основе.

Суть конструктора

Принципиальная схема металлоискателя на Ардуино включает ряд компонентов. Импульсы, генерируемые Ардуино, усиливает полевой транзистор, который индуцирует магнитное поле в катушке.

Создание этого устройства предполагает несколько последовательных шагов:

  1. Катушку нужно делать 20 см в диаметре с намоткой 20 витков провода. Толщина провода имеет значение для индукции всей катушки. Обычно используют провод 0,4 – 0,8 мм. Изолировать катушку можно, вставив ее в кусок пластиковой трубы от водопровода. Никаких дополнительных металлических соединений нет. Более подробно о создании катушки лучше посмотреть на специализированных сайтах.
  2. Сам детектор строится или на макете по схеме, или путем спайки деталей на печатной плате. Светодиод под номером D13 на плате Ардуино Нано служит индикатором при поиске металла.
  3. Что касается пайки на плате, то схему можно сделать односторонней или двухсторонней. Специалисты опытным путем установили, что первый вариант лучше. Из схемы нужно исключить диоды и добавить резистор в 10 Ом. При этом получается рабочий детектор с внешними компонентами.
  4. Для правильного собранного детектора и программы Ардуино единственный способ настройки – OLED-дисплей. Экран подключается к соответствующим выходам на плате, а после включения копки питания он должен показать «калибровку», которая длится несколько секунд. На экране появляются три цифры, которые должны иметь примерно одинаковые значения.
  5. Чтобы правильно настроить катушку, поблизости не должно находиться металлических предметов. Подстроечный резистор ставится на максимальную величину, но так, чтобы сохранялось стабильное показание.
  6. Проверить работу прибора можно, если поднести металл к катушке. Светодиод Ардуино загорается, а динамик щелкает.

Не стоит возлагать на устройство слишком большие ожидания. В силу своей конструкции детектор будет простым. Он сможет обнаруживать лишь какие-то вещи. До уровня профессионального он не дотягивает. Есть много возможностей для доработки с учетом первых испытаний в полевых условиях. Но все же прибор работает, с ним можно отправляться на поиски спрятанных сокровищ.

Переработанная версия всеми известного импульсного металлоискателя - "Пирата", но на Arduino. Имеет неплохую чувствительность даже на мелкие монеты. Стабилен в не зависимости от температуры и заряда батареи. Схема максимально упрощена.

Из недостатков можно отметить отсутствие возможности определять тип металла. Определять тип могут только металлоискатели с радио излучающим принципом детектирования (сложны в устройстве и требуют точной настройки). Импульсный металлоискатель в свою очередь работает на магнитном детектировании индукционных токов в металле. Индукция при поиске не различима для черный и цветных металлов.

К слову сказать, что есть еще третий тип металлоискателей - частотный. Малоэффективная и очень простая конструкция в основе которой генератор колебаний магнитного контура, который чувствителен к изменению величины индукции катушки. Мы ее рассматривать не будем из-за низкой чувствительности. Личный эксперименты по разработке такой конструкции в лучшем случае позволяли детектировать сковородку на 20 см глубины. На монет реагировал только в "упор". Практически бесполезная штука. По тому от нее сразу отказался.


Наша схема импульсного металлоискателя имеет в себе несколько основных компонентов. Arduino генерирует импульсы, они усиливаются полевым транзистором (силовым ключом) который в свою очередь индуцирует импульсы магнитное поле в катушке. Магнитный импульс проходит до искомого металла и индуцирует в нем ток, а затем обратный сигнал магнитного поля. Этот обратный магнитный поток через небольшую задержку возвращается обратно в катушку металлодетектора и генерирует импульс. Сигнал проходит мимо пары диодов (диоды нужны что бы ограничить напряжение до 1 вольта) и уходит на вход операционного усилителя. Усиленный сигнал попадает в arduino в котором высчитывается "спадающий хвост" после отключения катушки силовым ключем. Т.е. как раз ответ от искомого металлического предмета. В зависимости от времени спада мы можем судить о величине или удаленности объекта. Индикатор показывает эту величину в 8-и уровнях индикаторов.

К слову о катушке. Она должна быть диаметром 20 см с 20-ю витками провода 0,4 - 0,8 мм. Толщина провода так же влияет на индукцию всей катушки. Сильное отклонение от толщины провода приведет к ухудшению чувствительности прибора. Катушка вставлена в водопроводную ПВХ трубу и не имеет никаких дополнительных металлический соединений.



Скетч программы содержит генератор импульсов и алгоритм обработки входящего сигнала с усилителя.

Int ss0 = 0; int ss1 = 0; int ss2 = 0; long c0 = 0; long c1 = 0; long c2 = 0; byte i = 0; int sss0 = 0; int sss1 = 0; int sss2 = 0; int s0 = 0; int s1 = 0; int s2 = 0; void setup() { DDRB = 0xFF; // port B - all out DDRD = 0xFF; // port D - all out for (i = 0; i <255; i++) // калибровка { PORTB = B11111111; delayMicroseconds(200); PORTB = 0; delayMicroseconds(20); s0 = analogRead(A0); s1 = analogRead(A0); s2 = analogRead(A0); c0 = c0 + s0; c1 = c1 + s1; c2 = c2 + s2; delay(3); } c0 = c0 / 255; c0 = c0 - 5; c1 = c1 / 255; c1 = c1 - 5; c2 = c2 / 255; c2 = c2 - 5; } void loop() { PORTB = B11111111; delayMicroseconds(200); PORTB = 0; delayMicroseconds(20); s0 = analogRead(A0); s1 = analogRead(A0); s2 = analogRead(A0); ss0 = s0 - c0; if (ss0 < 0) { sss0 = 1; } ss0 = ss0 / 16; PORTD = ss0; // посылаем на индикатор (send to LEDs) delay(1); ss1 = s1 - c1; if (ss1 < 0) { sss1 = 1; } ss1 = ss1 / 16; PORTD = ss1; // посылаем на индикатор (send to LEDs) delay(1); ss2 = s2 - c2; if (ss2 < 0) { sss2 = 1; } ss2 = ss2 / 16; PORTD = ss2; // посылаем на индикатор (send to LEDs) delay(1); if (sss0+sss1+sss2 > 2) { digitalWrite(7,HIGH); digitalWrite(6,HIGH); digitalWrite(5,HIGH); digitalWrite(4,HIGH); digitalWrite(3,HIGH); digitalWrite(2,HIGH); digitalWrite(1,HIGH); digitalWrite(0,HIGH); delay(1); sss0 = 0; sss1 = 0; sss2 = 0; } }






Из этой инструкции вы узнаете как сделать самодельный металлоискатель в домашних условиях. Поиск различных металлических объектов — отличное хобби, которое обеспечит вам прогулки на свежем воздухе, позволит обнаружить новые места и, возможно, найти что-то интересное. Прежде чем узнать как сделать металлоискатель своими руками, выясните местные законы о том, как действовать в случае возможной находки, в частности, в случае опасных объектов, археологических реликвий или объектов значительной экономической или эмоциональной ценности.

В сети довольно много инструкций по самодельной сборке дома мощных металлоискателей для цветных металлов своими руками, однако, особенность этой инструкции в том, что в дополнение к Arduino требуется всего несколько компонентов: обычный конденсатор, резистор и диод, образующие сердечник вместе с поисковой катушкой, состоящей из 20 обмоток электропроводящего кабеля. Светодиод, динамик и / или наушники. Дополнительным преимуществом является то, что всё может питаться от 5 В, для чего достаточно общей мощности USB 2000 мАч.

Для того, чтобы интерпретировать сигнал и понять, какие материалы и какой формы предметы детектор может обнаруживать, необходимо углубиться в физику. Согласно правилу большого пальца, детектор чувствителен к объектам на расстоянии или глубине не превышающей радиус катушки. Он наиболее чувствителен к объектам, в которых ток может течь в плоскости катушки. Таким образом, металлический диск в плоскости катушки даст гораздо более сильный отклик, чем тот же металлический диск, перпендикулярный катушке. Вес объекта не имеет большого значения. Тонкая алюминиевая фольга, ориентированная в плоскости катушки, даст гораздо более сильный отклик, чем тяжелый металлический болт.

Шаг 1: Принцип работы

Когда электричество начинает проходить через катушку, оно создает магнитное поле. Согласно закону индукции Фарадея, изменяющееся магнитное поле приведет к электрическому полю, которое противостоит изменению магнитного поля. Таким образом, напряжение будет развиваться по катушке, что будет противодействовать увеличению тока. Этот эффект называется самоиндукцией, а единицей индуктивности является Генри, где катушка 1 Генри развивает разность потенциалов на 1 В, когда ток изменяется на 1 Ампер в секунду. Индуктивность катушки с N обмотками и радиусом R составляет приблизительно 5 мкГн x N ^ 2 x R, с R в метрах.

Наличие металлического объекта вблизи катушки изменит его индуктивность. В зависимости от типа металла индуктивность может увеличиваться или уменьшаться. Немагнитные металлы, такие как медь и алюминий вблизи катушки, уменьшают индуктивность, поскольку изменяющееся магнитное поле индуцирует вихревые токи в объекте, которые уменьшают интенсивность локального магнитного поля.

Ферромагнитные материалы, такие как железо, вблизи катушки увеличивают индуктивность, потому что индуцированные магнитные поля выравниваются с внешним магнитным полем.

Таким образом, измеряя индуктивность катушки можно обнаружить присутствие металлов поблизости. С Arduino, конденсатором, диодом и резистором можно измерить индуктивность катушки следующим образом: делая катушку частью высокочастотного LR фильтра и питая его волновыми блоками, будут создаваться короткие всплески на каждом переходе. Длительность этих всплесков пропорциональна индуктивности катушки. Фактически, характерное время фильтра LR равно tau = L / R. Для катушки с двадцатью витками и диаметром 10 см L ~ 5muH x 20 ^ 2 x 0,05 = 100 мкГн.

Для защиты Arduino от избыточного тока минимальное сопротивление составляет 200 Ом. Таким образом, мы ожидаем импульсы длиной около 0,5 микросекунды. Их трудно измерить напрямую с высокой точностью, учитывая, что тактовая частота Arduino составляет 16 МГц.

Вместо этого восходящий импульс можно использовать для зарядки конденсатора, который затем может быть считан аналого-цифровым преобразователем (ADC) Arduino. Ожидаемый заряд от импульса 25 мА длительностью 0,5 микросекунд составляет 12,5 нК, что даст 1,25 В на конденсаторе 10 нФ. Падение напряжения на диоде уменьшит это значение. Если импульс повторяется несколько раз, заряд конденсатора возрастает до ~ 2 В. Эти параметры можно получить с помощью Arduino ADC, используя analogRead (). Затем конденсатор можно быстро разрядить, изменив считывающий разъем на выходной и установив его на 0 В на несколько микросекунд.

Все измерения занимают около 200 микросекунд, 100 для зарядки и сброса конденсатора и 100 для преобразования ADC. Точность может быть значительно увеличена путем повторения измерения и усреднения результата: в среднем 256 измерений занимают 50 мс и улучшают точность в 16 раз. Таким образом, 10-битный ADC достигает точности 14-битного ADC.

Так как получаемые параметры крайне нелинейны с индуктивностью катушки, мы не можем узнать реальное значение индукции. Однако, для обнаружения металла нас интересуют только незначительные изменения индуктивности катушки из-за присутствия металлов по близости, и для этого этот метод идеально подходит.

Калибровка измерений может выполняться в автоматическом режиме с помощью ПО. Если рядом с катушкой большую часть времени нет металла, то отклонение от среднего значения, будет означать наличие рядом металлического объекта.

Используя различные цвета лампочек и звуки, можно так же видеть разницу – увеличивается или уменьшается индукция.

Шаг 2: Список необходимых компонентов

Электрическая основа:

  • Arduino UNO R3 + макетная плата или Arduino Nano с 5×7см макетной платой
  • 10nF конденсатор
  • Маленький сигнальный диод, например, 1N4148
  • 220- ом резистор

Для питания:

  • Переносная зарядка с USB кабелем

Для визуального вывода:

  • 2 светодиода разного цвета, например, синий и зеленый
  • 2 резистора 220 Ом для ограничения тока

Для вывода звука:

  • Пассивный зуммер
  • Микровыключатель для отключения звука

Для выхода наушников:

  • Разъем для наушников
  • Резистор 1 кОм
  • Наушники

Чтобы легко подключить / отключить поисковую катушку:

  • 2-контактный винтовой зажим (клемма)

Для поисковой катушки:

  • ~ 5 метров тонкого электрического кабеля

Конструкция для катушки. Должна быть жесткой, но не должна быть круглой. Для конструкции: Около 1 метра — палка деревянная, пластиковая или селфи-палка.

Шаг 3: Поисковая катушка

Для поисковой катушки я намотал примерно 4 м многожильного провода вокруг картонного цилиндра диаметром 9 см, в результате чего получилось 18 витков. Тип кабеля не имеет значения, если сопротивление по меньшей мере в десять раз меньше значения R в фильтре RL, поэтому убедитесь, что оно осталось ниже 20 Ом. Я измерил, вышло 1 Ом, так что это безопасно. Так же подходит 10 метровый рулон соединительной проволоки с разветвленными концами.

Шаг 4: Собираем прототип




Учитывая небольшое количество внешних компонентов, вполне возможно собрать схему на маленькой макетной плате. Однако конечный результат довольно громоздкий и не очень надежный. Поэтому, лучше использовать Arduino nano и припаять с дополнительными компонентами на панели прототипов 5×7 см (см. Следующий шаг)

Для обнаружения металлов используются всего 2 контакта Arduino, один для обеспечения импульсов к фильтру LR и один для считывания напряжения на конденсаторе. Пульсирование может производиться с любого выходного контакта, но считывание должно проводиться с помощью одного из аналоговых контактов A0-A5. Еще 3 контакта используются для 2 светодиодов и для вывода звука.

Последовательность сборки:

  1. На макетной плате последовательно подключите резистор 220 Ом, конденсатор и диод, направленный отрицательной клеммой (черная линия) к конденсатору.
  2. Подключите A0 к резистору (конец, не подключенный к диоду)
  3. Подключите A1 к месту пересечения диода и конденсатора
  4. Подключите один конец катушки к точке пересечения резистора и диода
  5. Подключите другой конец катушки к земле
  6. Подключите один светодиод его положительной клеммой к выводу D12 и его отрицательной клеммой через резистор 220 Ом к земле
  7. Подключите другой светодиод его положительной клеммой к выводу D11 и его отрицательной клеммой через резистор 220 Ом к земле
  8. При желании, подключите наушники или динамики между контактом 10 и землей. Конденсатор или резистор можно добавить последовательно для уменьшения громкости.

На этом все!

Шаг 5: Делаем окончательную версию устройства


Для того, чтобы использовать металлоискатель на улице, необходимо надежно припаять все компоненты. Обычная макетная плата 7х5см прекрасно подойдет к Arduino nano и все остальным компонентам. Используйте ту же схему, что и в прошлом шаге. Я так же решил добавить выключатель последовательно с зуммером, чтобы иметь возможность отключать звук, когда он не нужен. При помощи винтового зажима, можно быстро попробовать различные катушки, без необходимости заново паять. Все питание осуществляется через 5В mini- или microUSB порт Arduino Nano.

Шаг 6: Программное обеспечение

Скетч Arduino вы можете скачать ниже. Загрузите и запустите его. Я использовал Arduino 1.6.12 IDE. Рекомендуется запускать с debug = true в начале, чтобы настроить количество импульсов на измерение. Лучше всего иметь показания АЦП между 200 и 300. Увеличьте или уменьшите количество импульсов в случае, если ваша катушка дает совершенно другие показания.

Скетч делает некоторую самокалибровку. Достаточно расположить катушку вдали от металлов на некоторое время. Небольшие перемены в индуктивности будут наблюдаться, но внезапные большие изменения не повлияют на долгосрочное среднее значение.

Файлы

Шаг 7: Закрепляем устройство


Скорее всего, вы не захотите заниматься поиском сокровищ ползая по полу, так что лучше установить всю конструкцию на конец палки. Селфи-палка подойдет идеально, она легкая, складная и регулируемая. Переносной аккумулятор прекрасно подошел к палке. Плату можно закрепить при помощи кабельных стяжек и точно таким же образом катушку, прикрепив ее к аккумулятору или селфи-палке.

Шаг 8: Инструкция по применению

Для того, чтобы установилось референсное значение, достаточно отдалить самодельный металлоискатель от металлов примерно на 5 секунд. Затем, когда катушка будет приближаться к металлу, зеленый или синий светодиод начнут мигать, а так же будут слышны звуковые сигналы.

Синие вспышки и звуковые сигналы низкой частоты указывают на присутствие неферромагнитных металлов. Зеленые вспышки и звуковые сигналы высокой частоты указывают на присутствие ферромагнитных металлов. Учтите, что когда катушка находится более 5 секунд вблизи металла, то полученное значение будет считаться референсным, и звуковой сигнал будет издаваться, когда вы отведете детектор от металла, который затихнет через несколько секунд. Частота моргания диодов и звуковых сигналов зависит от мощности сигнала.

Loading...Loading...