Контроллеры li ion. Полный обзор платы заряда li-ion аккумуляторов - электроника - обзоры - качественные обзоры товаров из китая

И снова устройство для самоделкиных.
Модуль позволяет заряжать Li-Ion аккумуляторы (как защищённые так и незащищённые) от порта USB посредством кабеля miniUSB.

Печатная плата - двусторонний стеклотекстолит с металлизацией, монтаж аккуратный.




Собрана зарядка на базе специализированного контроллера заряда TP4056.
Реальная схема.


Со стороны аккумулятора, устройство ничего не потребляет и его можно оставлять постоянно подключенным к аккумулятору. Защита от КЗ на выходе - есть (с ограничением тока 110мА). Защита от переполюсовки аккумулятора отсутствует.
Питание miniUSB продублировано пятаками на плате.




Работает устройство так:
При подключении питания без аккумулятора, загорается красный светодиод, а синий периодически помаргивает.
При подключении разряженного аккумулятора, красный светодиод гаснет и загорается синий - начинается процесс заряда. Пока напряжение на аккумуляторе меньше 2,9V, ток заряда ограничен величиной 90-100мА. С повышением напряжения выше 2.9V, ток заряда резко возрастает до 800мА с дальнейшим плавным повышением до номинала 1000мА.
При достижении напряжения 4,1V, ток заряда начинает плавно снижаться, в дальнейшем происходит стабилизация напряжения на уровне 4,2V и после уменьшения зарядного тока до 105мА светодиоды начинают периодически переключаться, показывая окончание заряда, при этом заряд всё равно продолжается с переключением на синий светодиод. Переключение идёт в соответствии с гистерезисом контроля напряжения аккумулятора.
Номинальный ток заряда задаётся резистором 1,2кОм. При необходимости, ток можно уменьшить увеличивая номинал резистора согласно спецификации контроллера.
R (кОм) - I (mA)
10 - 130
5 - 250
4 - 300
3 - 400
2 - 580
1.66 - 690
1.5 - 780
1.33 - 900
1.2 - 1000

Конечное напряжение заряда жёстко задано на уровне 4,2V - т.е. не всякий аккумулятор будет заряжен на 100%
Спецификация контроллера.

Вывод: устройство простое и полезное для выполнения конкретной задачи.

Планирую купить +167 Добавить в избранное Обзор понравился +96 +202

В статье расскажем про контроллер заряда Li-Ion на MCP73833.

Рисунок 1.

Предыдущий опыт

До этого момента я использовал контроллеры LT4054 , и честно говоря, был им доволен:

Он позволял заряжать компактные Li-Pol аккумуляторы ёмкостью до 3000мАч

Был ультрокомпактен: sot23-5

Имел индикатор зарядки аккумулятора

Имеет кучу защит, что делает из него практически не убиваемый чип

Рисунок 2.

Дополнительным плюсом является то, что перед тем как я на нём начал что-то делать, я купил их 50 штук, по очень скромной цене.

Недостатки я выявил в работе, и они меня, честно говоря, поставили в частичный ступор:

Максимальный заявленный ток 1А, думал я. Но уже при 300мА в процессе зарядки чип прогревается до 110*С даже при наличии больших полигонов-радиаторов и радиатора прикреплённого к пластиковой поверхности чипа.

Во время включения тепловой защиты, там видимо срабатывает компаратор, который быстро сбрасывает ток. В результате этого микросхема превращается в генератор, который убивает батарейку. Таким образом я убил 2 аккумулятора, пока не понял в чём дело с осциллографом.

В виду вышеперечисленного я получил проблему с временем заряда устройства порядка 10 часов. Конечно, это сильно не устраивало меня и потребителей моей электроники, но что поделать: все хотели увеличить ресурс работы при тех-же параметрах устройства, а они у меня порой потребляют много.

В связи с этим я начал искать контроллер, который был бы с куда лучшими параметрами и возможностями теплоотвода и мой выбор остановился пока на MCP73833 в основном из-за того, что данные контроллеры были у моего друга в наличии, и я свистнув пару штук быстро(быстрее его) запаял прототип и провёл нужные мне испытания.

Немного о самом контроллере.

Давайте я не буду заниматься полным и доскональным переводом даташита(хотя это и полезно), а быстро и просто расскажу о том, на что я смотрел в первую очередь в данном контроллере и нравилось ли мне это или нет.

1. Общая схема включения – это то, что бросается в глаза с начала. Легко заметить, что за исключением индикации (которую можно и не делать) обвязка состоит всего из 4 деталей. В них входят два фильтрующих конденсатора, резистор программирования тока заряда аккумулятора и терморезистор на 10к для контроля перегрева Li-Ion аккумулятора. Данная схема показана на рисунке 3. Это определённо здорово.

Рисунок 3. Схема подключения MCP73833

2. У неё в разы лучше с теплом. Это видно даже по схеме подключения, так как видны одинаковые ножки, которые можно использовать под отвод тепла. Дополнительно к этому, взглянув на то, что микросхема выпускается в корпусах msop-10 и DFN-10, которые больше по площади поверхности чем sot23-5. Тем более в корпусе DFN-10 есть специальный полигон, который можно и нужно использовать как отвод тепла на большую поверхность. Если не верите, то сами смотрите на рисунок 4. На нём приведены выводы ножек у DFN-10 корпуса и рекомендуемая производителем трассировка печатной платы, с отводом тепла при помощи полигона.

Рисунок 4.

3. Наличие терморезистора на 10к. Конечно, в большинстве случаев я им пользоваться не буду, так как я уверен, что не перегрею батарейку, но: есть задачи, в которых я подразумеваю полный заряд батарейки всего за 30 минут работы от блока питания. В таких случаях, возможен вариант перегрева самого аккумулятора.

4. Достаточно сложная система индикации зарядки аккумулятора. Как я понял и попробовал: там 1 светодиод отвечает за то, подведено ли питание со стороны заряжающего блока питания. По идее, штука не такая нужная, но: у меня были случаи, когда я разбивал разъём и просто контроллер не получал 5В на вход. В таких случаях сразу было понятно, что не так. Крайне полезная фишка для разработчиков. Для потребителей она легко заменяется просто светодиодом по линии 5В входа, установленного с ограничивающим его ток резистором.

5. Два остальных светодиода разбиты на стадии зарядки. Это позволяет разгрузить МК(если не требуется например показывать на дисплее заряд аккумулятора) в плане обработки заряда на батарейке во время зарядки(индикация зарядился или нет).

6. Программирование тока заряда в широких пределах. Лично я попробовал вытащить на плате, показанной на рисунке 1 зарядный ток в 1А, и на отметке 890мА плата в стабильном режиме работы уходила в тепловую защиту. Как говорят люди вокруг, при больших полигонах они отлично вытаскивали с данного контроллера и 2А, а по техническому описанию предельный ток заряда 3А, но у меня есть ряд сомнений, связанных с тепловой нагрузкой на микросхему.

7. Если верить даташиту, то в данной микросхеме есть: Low-Dropout Linear Regulator Mode – режим пониженного входного напряжения. В этих режимах вы, с помощью DC-DC преобразователя аккуратно можете на время начала заряда немного снизить напряжение на входе микросхемы, для уменьшения её тепловыделений. Лично я пробовал снижать напряжение, и тепла становилось логично меньше, но на данной микросхеме должно падать хотя бы 0,3-0,4В, чтобы она могла удобно ей заряжать батарейку. Чисто технически я собираюсь сделать небольшой модуль, который это делает автоматически, но денег и времени на это у меня нет, по этому радостно прошу в почту всех заинтересовавшихся. Если вас наберётся несколько ещё человек, то такую штуку нашим сайтом мы выпустим.

8. Не понравилось, что корпус совсем маленький. Паять его без фена (DFN-10) сложно, и качественно не получится, как ни крути. С msop-10 по лучше, но у новичков уходит значительное время обучиться технике его пайку.

9. Не понравилось, что в данном контроллере нет встроенного BMS(защиты аккумулятора от быстрого заряда/разряда и ещё ряда проблем). Но такие штуки есть у более дорогих контроллеров у тех-же TI.

10. Понравилась цена. Данные контроллеры не дорогие.

Что дальше?

А дальше я собираюсь внедрять данную микросхему в различные свои идеи по устройствам. К примеру, сейчас уже производиться на заводе пробная версия отладочной платы на базе STM32F103RCT6 и 18650 аккумуляторов. У меня уже есть отладочная плата на данном контроллере, которая себя очень хорошо зарекомендовала и я хочу дополнить её носимой версией для того, чтобы я мог взять свой рабочий проект с собой и не думать о питании и поиски розетки, в которую можно вставить блок питания.

Так-же я буду использовать её во всех решениях, где требуются зарядные токи более 300мА.

Надеюсь и вы, сможете применить данную полезную и простую микросхему в своих устройствах.

Если вообще интересно про батарейное питание, то вот моя личная видеозапись по поводу батарейного питания устройств.

Покупался лот из десяти штук, для переделки питания кое-каких устройств на li-ion аккумуляторы (сейчас в них используется 3АА аккумулятора ), но в обзоре я покажу другой вариант применения этой платы, который, хоть и не задействует все её возможности. Просто из этих десяти штук нужны только будут только шесть, а покупать поштучно 6 с защитой и пару без защиты получается менее выгодно.

Основанная на TP4056 плата заряда с защитой для Li-Ion аккумуляторов c током до 1A предназначена для полноценной зарядки и защиты аккумуляторов (к примеру, популярных 18650 ) с возможностью подключения нагрузки. Т.е. данную плату можно легко встроить в различные устройства, такие как фонарики, светильники, радиоприемники и т.д.,с питанием от встроенного литиевого аккумулятора, и заряжать его не вынимая из устройства любой USB-зарядкой через microUSB разъем. Ещё эта плата отлично подойдет для ремонта сгоревших зарядок Li-Ion аккумуляторов.

И так, кучка плат, каждая в индивидуальном пакетике (тут уже конечно меньше чем покупалось )

Выглядит платка вот так:

Можно рассмотреть поближе установленные элементы

Слева microUSB вход питания, питание также продублировано площадками + и - под пайку.

В центре контроллер заряда, Tpower TP4056, над ним пара светодиодов, отображающих либо процесс заряда (красный) либо окончание заряда (синий), под ним резистор R3, изменяя номинал которого можно изменить ток заряда аккумулятора. TP4056 заряжает аккмуляторы по алгоритму CC/CV и автоматически завершает процесс зарядки, если ток заряда снижается до 1/10 от установленного.

Табличка номиналов сопротивления и зарядного тока, согласно спецификации контроллера.


  • R (кОм) - I (mA)

  • 1.2 - 1000

  • 1.33 - 900

  • 1.5 - 780

  • 1.66 - 690

  • 2 - 580

  • 3 - 400

  • 4 - 300

  • 5 - 250

  • 10 - 130

правее стоит микросхема защиты аккумулятора (DW01A), с необходимой обвязкой (электронный ключ FS8205A 25мОм с током до 4А), и на правом краю есть площадки B+ и B- (будьте внимательны, возможна плата не защищена от переполюсовки ) для подключения аккумулятора и OUT+ OUT- для подключения нагрузки.

С обратной стороны платы нет ничего, так что её можно, например, приклеить.

А теперь вариант применения платы заряда и защиты li-ion аккумуляторов.

Ныне почти во всех видеокамерах любительского формата в качестве источников питания используются li-ion аккумуляторы напряжением 3,7В, т.е. 1S. Вот один из дополнительно купленных аккумуляторов для моей видеокамеры


У меня их несколько, производства (или маркировки ) DSTE модель VW-VBK360 емкостью по 4500мАч (не считая оригинального, на 1790мАч )

Зачем мне столько? Да, конечно, моя камера заряжается от БП с номиналами 5В 2А, и купив отдельно штекер USB и подходящий разъем, я теперь могу её заряжать и от повербанков (и это одна из причин зачем мне, и не только мне, их столько ), да вот только снимать на камеру, к которой ещё и тянется провод - неудобно. Значит надо как-то заряжать аккумуляторы вне камеры.

Я уже показывал в вот такую зарядку

Да-да, это она, с поворачивающейся вилкой американского стандарта

Вот так она легко разделяется

И вот так, в неё вживляется плата заряда и защиты литиевых аккумуляторов

И конечно же, я вывел пару светодиодов, красный - процесс заряда, зеленый - окончание заряда аккумулятора

Вторая плата была установлена аналогично, в зарядку от видеокамеры Sony. Да, конечно, новые модели видеокамер Sony заряжаются от USB, у них даже есть не отсоединяющийся USB-хвостик (глупое на мой взгляд решение ). Но опять же, в полевых условиях, снимать на камеру, к которой тянется кабель от повербанка менее удобно чем без него. Да и кабель должен быть достаточно длинным, а чем длиннее кабель, тем больше его сопротивление и тем больше на нем потери, а уменьшать сопротивление кабеля увеличивая толщину жил, кабель становится более толстым и менее гибким, что не добавляет удобства.

Так что из таких плат для заряда и защиты li-ion аккумуляторов до1А на TP4056 легко можно сделать простое зарядное устройство для аккумулятора своими руками, переделать зарядное устройство на питание от USB, например для зарядки аккумуляторов от повербанка, сделать ремонт зарядного устройства при необходимости.

Все написанное в этом обзоре можно увидеть в видеоверсии:

http://radiokot.ru/forum/viewtopic.php?f=11&t=116399
Приветствую вас, глубокоуважаемые радиокоты! В силу современности широко набирают обороты литий-ионные аккумуляторы. Как известно, у них прекрасные характеристики по выдаваемой мощности, сроку службы и все это при сравнительно небольших размерах. Но у них есть один небольшой недостаток: обязательно нужен контроль заряда и разряда. Иначе они просто необратимо выйдут из строя.
Надеюсь, что обсуждение моей ситуации поможет другим в подобной проблеме: в шуруповерте вышла из строя кнопка, а именно микросхема , спрятанная в компаунде. Такой кнопки у нас нигде нет, поэтому пришлось переделать ее, исключив электронную начинку полностью, оставив только контакт замыкания цепи электромоторчика. Через некоторое время выяснилось , что аккумуляторы разрядились больше допустимой нормы и дальнейшая зарядка не помогает. Я сделал вывод о том, что микросхема в кнопке отвечала не только за кол-во оборотов в минуту, но и за контроль разряда. Разобрав аккумулятор я узнал, что из 5 банок все-таки 3 рабочие. Имеется второй такой же "полурабочий" аккумулятор. То есть, можно из двух собрать один. Но проблема окончательно решится , если собрать контроллер разряда самому (а заодно и разобраться как он работает) и встроить его в шуруповерт. Контроллер заряда уже имеется в зарядном устройстве.
В интернете увы об этом сказано мало и того что мне нужно там я не нашел. Чувствую весенний запах микроконтроллеров
http://www.kosmopoisk72.ru/index.php?op ... &Itemid=70 Здесь контроллер действует только на 2 банки. Помогите пожалуйста рассчитать его так, чтобы он действовал для пяти банок.
http://www.radioscanner.ru/forum/topic38439.html здесь он действует только для одной банки.
http://radiokot.ru/konkursCatDay2014/06/ Здесь он слишком сложен, т. к. необходим программатор и соответствующая микросхема. Кроме того в данной схеме еще плюс ко всему заложен еще и контроллер заряда. Я начинающий радиолюбитель. Может имеется что-то из более доступного и простого? Если нет , тогда я с удовольствием готов освоить микроконтроллеры.
1. Подскажите, как рассчитать контроллер разряда для 5 банок?
2. Если лучший вариант будет на микроконтроллере, то какой именно приобрести?
3. Каким самодельным (наиболее простым) программатором его можно запрограммировать?
4. Как самому написать программу (код) для микроконтроллера?
5. Может лучше контролировать разряд 5 банок, взяв за основу одну? И встроить его в сам аккумулятор, а не в шуруповерт? Просто если в шуруповерт , то одной схемы хватит и на первый аккумулятор и на второй. (я же ведь их два сразу не могу включить )
Ток нагрузки шуруповерта, как известно большой: 10-12 А. Номинальное напряжение одной банки стандартно: 3,7 В, следовательно пяти банок: 18,5 В. Было бы здорово, если бы еще была защита от КЗ (то есть если бы пошел ток свыше 12 А)
Решение там одно.. использовать готовые платы защиты. Или колхозить с умощнением ключей для встроенных в сотовые и прочие маломощные платки или брать готовые типа таких http://zapas-m.ru/shop/UID_282.html (там по ссылке есть и более мощные , я выкидывал ИС ключи и ставил обычные полевики.

Схема контроллера литий-ионного аккумулятора

Устройство и принцип работы защитного контроллера Li-ion/polymer аккумулятора

Если расковырять любой аккумулятор от сотового телефона, то можно обнаружить , что к выводам ячейки аккумулятора припаяна небольшая печатная плата. Это так называемая схема защиты, или Protection IC . Из-за своих особенностей литиевые аккумуляторы требуют постоянного контроля. Давайте разберёмся более детально , как устроена схема защиты, и из каких элементов она состоит.

Рядовая схема контроллера заряда литиевого аккумулятора представляет собой небольшую плату, на которой смонтирована электронная схема из SMD компонентов. Схема контроллера 1 ячейки ("банки") на 3,7V, как правило, состоит из двух микросхем. Одна микросхема управляющая , а другая исполнительная – сборка двух MOSFET-транзисторов.

На фото показана плата контроллера заряда от аккумулятора на 3,7V.

Микросхема с маркировкой DW01-P в небольшом корпусе – это по сути "мозг" контроллера. Вот типовая схема включения данной микросхемы. На схеме G1 - ячейка литий-ионного или полимерного аккумулятора. FET1, FET2 - это MOSFET-транзисторы.

Цоколёвка, внешний вид и назначение выводов микросхемы DW01-P.

Транзисторы MOSFET не входят в состав микросхемы DW01-P и выполнены в виде отдельной микросхемы-сборки из 2 MOSFET транзисторов N-типа. Обычно используется сборка с маркировкой 8205, а корпус может быть как 6-ти выводной (SOT-23-6), так и 8-ми выводной (TSSOP-8). Сборка может маркироваться как TXY8205A, SSF8205, S8205A и т.д. Также можно встретить сборки с маркировкой 8814 и аналогичные.

Вот цоколёвка и состав микросхемы S8205A в корпусе TSSOP-8.

Два полевых транзистора используются для того, чтобы раздельно контролировать разряд и заряд ячейки аккумулятора. Для удобства их изготавливают в одном корпусе.

Тот транзистор (FET1), что подключен к выводу OD (Overdischarge ) микросхемы DW01-P, контролирует разряд аккумулятора – подключает/отключает нагрузку. А тот (FET2), что подключен к выводу OC (Overcharge ) – подключает/отключает источник питания (зарядное устройство). Таким образом, открывая или закрывая соответствующий транзистор, можно, например , отключать нагрузку (потребитель) или останавливать зарядку ячейки аккумулятора.

Давайте разберёмся в логике работы микросхемы управления и всей схемы защиты вцелом.

Защита от перезаряда (Overcharge Protection).

Как известно, перезаряд литиевого аккумулятора свыше 4,2 – 4,3V чреват перегревом и даже взрывом.

Если напряжение на ячейке достигнет 4,2 – 4,3V (Overcharge Protection Voltage - V OCP ), то микросхема управления закрывает транзистор FET2, тем самым препятствуя дальнейшему заряду аккумулятора. Аккумулятор будет отключен от источника питания до тех пор, пока напряжение на элементе не снизится ниже 4 – 4,1V (Overcharge Release Voltage V OCR ) из-за саморазряда. Это только в том случае, если к аккумулятору не подключена нагрузка, например он вынут из сотового телефона.

Если же аккумулятор подключен к нагрузке, то транзистор FET2 вновь открывается , когда напряжение на ячейке упадёт ниже 4,2V.

Защита от переразряда (Overdischarge Protection).

Если напряжение на аккумуляторе падает ниже 2,3 – 2,5V (Overdischarge Protection Voltage - V ODP ), то контроллер выключает MOSFET-транзистор разряда FET1 – он подключен к выводу DO.

Тут есть весьма интересное условие . Пока напряжение на ячейке аккумулятора не превысить 2,9 – 3,1V (Overdischarge Release Voltage - V ODR ), нагрузка будет полностью отключена. На клеммах контроллера будет 0V. Те, кто мало знаком с логикой работы защитной схемы могут принять такое положение дел за "смерть" аккумулятора. Вот лишь маленький пример.

Миниатюрный Li-polymer аккумулятор 3,7V от MP3-плеера. Состав: управляющий контроллер - G2NK (серия S-8261 ), сборка полевых транзисторов - KC3J1 .

Аккумулятор разрядился ниже 2,5V. Схема контроля отключила его от нагрузки. На выходе контроллера 0V.

При этом если замерить напряжение на ячейке аккумулятора, то после отключения нагрузки оно чуть подросло и достигло уровня 2,7V.

Чтобы контроллер вновь подключил аккумулятор к "внешнему миру", то есть к нагрузке, напряжение на ячейке аккумулятора должно быть 2,9 – 3,1V (V ODR ).

Тут возникает весьма резонный вопрос.

По схеме видно, что выводы Стока (Drain) транзисторов FET1, FET2 соединены вместе и никуда не подключаются. Как же течёт ток по такой цепи , когда срабатывает защита от переразряда? Как нам снова подзарядить "банку" аккумулятора, чтобы контроллер опять включил транзистор разряда - FET1?

Если порыться в даташитах на микросхемы защиты Li-ion/polymer (в том числе DW01-P ,G2NK ), что после срабатывания защиты от глубокого разряда, действует схема обнаружения заряда - Charger Detection . То есть при подключении зарядного устройства схема определит , что зарядник подключен и разрешит процесс заряда.

Зарядка до уровня 3,1V после глубокого разряда литиевой ячейки может занять весьма длительное время - несколько часов.

Чтобы восстановить литий-ионный/полимерный аккумулятор можно использовать специальные приборы, например, универсальное зарядное устройство Turnigy Accucell 6 . О том, как это сделать, я уже рассказывал здесь .

Именно этим методом мне удалось восстановить Li-polymer 3,7V аккумулятор от MP3-плеера. Зарядка от 2,7V до 4,2V заняла 554 минуты и 52 секунды, а это более 9 часов ! Вот столько может длиться "восстановительная" зарядка.

Кроме всего прочего, в функционал микросхем защиты литиевых акумуляторов входит защита от перегрузки по току (Overcurrent Protection ) и короткого замыкания. Защита от токовой перегрузки срабатывает в случае резкого падения напряжения на определённую величину. После этого микросхема ограничивает ток нагрузки. При коротком замыкании (КЗ) в нагрузке контроллер полностью отключает её до тех пор, пока замыкание не будет устранено.


Контроллер заряда-разряда (PCM) для Li-Ion батареи 14,8В 4А 4S-EBD01-4

http://zapas-m.ru/shop/UID_282.html

Артикул: 0293

Номинальное напряжение: 14,8В Номинальный рабочий ток: 4А Защита от перезаряда/переразряда/перегрузки Встроенный терморезистор


335 руб.


Технические характеристики

Модель: 4S-EBD01-4


Количество последовательно-соединенных Li-Ion АКБ: 4шт
Рабочие напряжения: 11,2В... 16,8В
Напряжение перезаряда ячейки (VCU): 4,275±0,025В
Напряжение переразряда (VDD): 2,3±0,1В
Номинальный рабочий ток: 3А - 4А
Пороговое значение тока (IEC): 4А - 6А
Защита от перезаряда
Защита от переразряда
Защита от КЗ
Размеры,мм: 15 х 46.1 х 2.62
Вес, гр: 2

Контроллер: S-8254А


Даташит на S-8254А

Контроль напряжения на каждой из ячеек:


При выходе напряжения на какой-либо из ячеек за пороговые значения вся батарея автоматически отключается.
Контроль по току:
При превышении током нагрузки пороговых значений вся батарея автоматически отключается.

Описание выводов:
" B- " - общий минус батареи
" B1 " - +3,7В
" B2 " - +7,4В
" B3 " - +11,1В
" B+ " - общий плюс батареи
" P- " - минус нагрузки (зарядного устройства)
" P+ " - плюс нагрузки (зарядного устройства)
"T " - выход терморезистора NTC 10K

Интегральные схемы управления питанием от ON Semiconductor (ONS) уже хорошо известны отечественным разработчикам. Это AC/DC-преобразователи и ШИМ-контроллеры, корректоры коэффициента мощности, DC/DC-преобразователи и, конечно, линейные регуляторы. Однако практически ни одно портативное устройство не может обойтись без аккумулятора и, соответственно, без микросхем для его заряда и защиты. Компания ONS имеет в линейке продукции ряд решений для управления зарядом аккумуляторов, которые традиционно для ONS сочетают достаточную функциональность с невысокой стоимостью и простотой применения.

Основные типы применяемых аккумуляторов

В современной электронике наиболее распространены NiCd/NiMH и Li-Ion/Li-Pol аккумуляторы. Каждый из них обладает своими преимуществами и недостатками. Никель-кадмиевые (NiCd) аккумуляторы дешевы, а также имеют самое большое количество циклов разряда/заряда и большое значение нагрузочного тока. Основными недостатками являются: высокий саморазряд, а также «эффект памяти», который приводит к частичной потере емкости при частом заряде не до конца разряженного аккумулятора.

Никель-металлогидридные (NiMH) аккумуляторы — это попытка устранения недостатков NiCd, в частности «эффекта памяти». Данные аккумуляторы менее критичны к заряду после неполной разрядки и практически в два раза превосходят NiCd по величине удельной емкости. Не обошлось и без потерь, NiMH аккумуляторы обладают меньшим числом циклов разряд/заряд и более высоким саморазрядом по сравнению с NiCd.

Литий-ионные (Li-Ion) аккумуляторы обладают самой высокой плотностью энергии, что позволяет им превосходить другие типы аккумуляторов по величине емкости при тех же габаритных размерах. Низкий саморазряд и отсутствие «эффекта памяти» делают этот тип аккумуляторов неприхотливым в использовании. Однако для обеспечения безопасности использования литий-ионные аккумуляторы требуют применения технологий и конструктивных решений (полиолефиновые пористые пленки для изоляции положительного и отрицательного электродов, наличие терморезистора и предохранительного клапана для сброса избыточного давления), которые приводят к увеличению стоимости аккумуляторов на основе лития по сравнению с другими элементами питания.

Литий-полимерные (Li-Pol) аккумуляторы — это попытка решить проблему безопасности аккумуляторов на основе лития путем использования твердого сухого электролита вместо электролита в виде геля в Li-Ion. Такое решение позволяет получить схожие с Li-Ion аккумуляторами характеристики при меньшей стоимости. Помимо повышенной безопасности, использование твердого электролита позволяет уменьшить толщину аккумулятора (до 1,5 мм). Единственным недостатком по сравнению с Li-Ion аккумуляторами является менее широкий диапазон рабочих температур, в частности Li-Pol аккумуляторы не рекомендуется заряжать при минусовых температурах.

MC33340/42 — контроль заряда NiCd и NiMH аккумуляторов

В современных портативных приложениях требуется максимально быстрый заряд аккумулятора, предотвращение перезаряда, максимальный срок службы и предотвращение потери емкости. MC33340 и MC33342 — контроллеры заряда от ON Semiconductor, которые сочетают в себе все, что необходимо для быстрого заряда и защиты NiCd и NiMH аккумуляторов.

Контроллеры МС33340/42 реализуют :

  • быстрый заряд и «капельную» подзарядку (trickle charge);
  • окончание зарядки по изменению напряжения и температуры;
  • детектирование одноразовых батарей и отказ от их зарядки;
  • программируемое время быстрой зарядки от одного до четырех часов;
  • детектирование перезаряда и недозаряда батареи, перегрева и перенапряжения по входу;
  • паузу перед отключением зарядки при детектировании по изменению напряжения (177 с для MC33340 и 708 с для MC33342).

Данные контроллеры в сочетании с внешним линейным или импульсным преобразователем образуют законченную систему для зарядки аккумуляторов. Пример такой зарядной схемы с использованием классического стабилизатора LM317 показан на рис. 1.

Рис. 1.

LM317 в данной схеме работает как стабилизированный источник тока с установкой зарядного тока резистором R7:

I chg(fast) = (V ref + I adjR8)/R7. Ток капельной подзарядки устанавливается резистором R5:

I chg(trickle) = (V in — V f(D3) — V batt)/R5. Делитель R2/R1 должен быть рассчитан таким образом, чтобы при полном заряде аккумулятора на входе Vsen было меньше 2 В:

R2 = R1(V batt /V sen — 1).

С помощью выводов t1, t2, t3 трехбитной логикой (ключами на схеме) устанавливается либо время заряда 71…283 мин, либо верхний и нижний пределы детектирования температуры.

На основе представленной схемы компания ON Semiconductor предлагает отладочные платы MC33340EVB и MC33342EVB .

NCP1835B — микросхема для заряда Li-Ion и Li-Pol аккумуляторов

Литиевые аккумуляторы требуют высокой стабильности зарядного напряжения, например, для аккумулятора LIR14500 от компании EEMB зарядное напряжение должно находиться в пределах 4,2±0,05 В. Для заряда аккумуляторов на основе лития ONS предлагает полностью интегрированное решение — NCP1835B. Это микросхема заряда с линейным регулятором, профилем заряда CCCV (constant current, constant voltage) и зарядным током 30…300 мА. Питание NCP1835B может осуществляться либо от стандартного AC/DC-адаптера, либо от USB-порта. Вариант схемы включения представлен на рис. 2.


Рис. 2.

Основные характеристики :

  • интегрированный стабилизатор тока и напряжения;
  • возможность зарядки полностью разряженной батареи (током 30мА);
  • определение окончания зарядки;
  • программируемый зарядный ток;
  • выходы статуса и ошибки зарядки;
  • выход 2,8В для определения присутствия адаптера на входе или питания микроконтроллера током до 2мА;
  • входное напряжение от 2,8 до 6,5В;
  • защита от продолжительного заряда (программируемое максимальное время заряда 6,6…784 мин).

NCP349 и NCP360 — защита
от перенапряжения с интегрированным
MOSFET-транзистором

Еще одним важным моментом в системах заряда аккумуляторов является защита от превышения допустимого входного напряжения. Решения, предлагаемые ONS, отключают выход от целевой схемы в случае присутствия на входе недопустимого напряжения.

NCP349 — новинка от ONS, которая защищает от перенапряжения по входу до 28 В. Микросхема отключает выход при превышении верхнего порога входным напряжением или если нижний порог не достигнут. Также предусмотрен выход FLAG# для сигнализации перенапряжения на входе. Типовая схема применения показана на рис. 3.


Рис. 3.

Данная микросхема доступна с различными нижними (2,95 и 3,25 В) и верхними (5,68; 6,02; 6,4; 6,85 В) порогами срабатывания, которые закодированы в наименовании. NCP360 обладает такой же функциональностью, что и NCP349, за исключением максимального напряжения на входе: 20 В.

Заключение

Компания ON Semiconductor по сравнению с конкурентами обладает не очень широкой линейкой микросхем для заряда аккумуляторов. Однако представленные решения в своем сегменте характеризуются конкурентоспособными характеристиками и ценой, а также простотой применения.

Loading...Loading...