Что такое. Что такое рендеринг (rendering), и какие особенности имеет этот процесс Что такое рендеринг изображения

.
Интересен тот факт, что организация располагает не только своими дата-серверами. С компанией можно сотрудничать, предложив свои дата-центры (соответствующие определенным требованиям) для хранения информации пользователей в зашифрованном виде.

Но, наряду с хранением информации, будет не менее полезным для нас сервис облачно-распределенных вычислений, и в частности, рендеринга.

В идее нет ничего необычного. Я далеко не первый, кому эта идея пришла в голову.
Но делюсь я своими соображениями, потому что считаю, что подобный сервис будет многим очень полезен.

Итак, что такое «рендеринг»? Рендеринг - это вычислительный процесс, в ходе которого, мы получаем красивую картинку по 3д модели с помощью программы «рендера».
Что такое «распределенный»? Это когда хранение или вычисление данных распределяют между множеством компьютеров или серверов, объединенными одной сетью (см. распределенные вычисления).
Распределенный рендеринг - вычислительный процесс, по созданию изображений, распределенный между компьютерами. Вычисления также могут на себя брать облака .


Какой смысл?

  1. Польза для окружающих. У многих дома лежат достаточно мощные, невостребованные вычислительные ресурсы. У меня, к примеру, стоит GTX580, core i5 2500. Играю я редко, и то, в нетребовательную к ресурсам игру. Я бы смог использовать свою видеокарту с пользой для кого-то, но нет подходящей инфраструктуры.
  2. Денежная выгода для участника. Свои вычислительные ресурсы я могу продавать кому-либо за деньги.
  3. Заказчик может покупать вычислительные ресурсы обладателя мощной видеокарты.
Стороны
  1. Инициатор. Человек, который решил запустить рендеринг на компьютере работника. Инициатор загружает модели, текстуры, шейдеры в облако.
  2. Работник. Обладатель вычислительных ресурсов, который может производить вычисления на своем мощном железе, для того, чтобы показать зрителю.
  3. Зритель. Смотрит отрендеренную картинку, смотрит объекты со всех сторон, присваивает заготовленные материалы, прочее.
В роли инициатора, работника и зрителя может выступать один и тот же человек. Инициатор может быть зрителем, работник зрителем, инициатор работником.

Какова концепция программы?

  1. Конфиденциальность (эту опцию можно отключить при необходимости). Работник не должен знать ничего о том, что именно он рендерит на своем компьютере (если зритель сам этого не пожелает).
  2. Максимальное качество при минимальном объеме настроек, возможность рендеринга в реальном времени. Для этого лучше всего подойдет .
  3. Работоспособность на любой ОС (Linux, Windows, OSX), поддержка большинства распространенного оборудования (AMD, Nvidia, Intel, может и других платформ).
Какую вычислительную платформу использовать?
CPU + GPU. На мой взгляд, GPU рендеры уже достаточно хороши для того, чтобы использовать их, как платформу для рендеринга, наряду с процессорами x86-64. Преимущество - скорость вычисления. Однако, написание программы на GPU имеет ряд недостатков:
  1. Сложность написания кода, для написания программы на GPU требуются фреймворки, такие как OpenCL , CUDA (Nvidia), FireStream (AMD), и шейдерные языки GLSL (OpenGL) и HLSL (DirectX).
  2. Сравнительно небольшой объем памяти, невозможность увеличивать объем памяти без существенной потери производительности.
Для того, чтобы поддерживать большую часть оборудования, я считаю нужным использовать OpenCL или шейдерный язык GLSL. Вычисления на шейдерах выполняются существенно быстрее (видео о вычислении физики мягких тканей), к тому же, на шейдерах уже есть рендер RenderBRO (использует HLSL).

Я считаю, что GLSL версии 4 (и более) является лучшей платформой для создания рендера, потому что:

  1. Имеет высокую производительность в сочетании с мощным железом.
  2. Работает на всех операционных системах и на любом железе, поддерживающем OpenGL версии 4+
Если задача на GLSL не будет выполнимой вообще - можно попытаться сделать рендер на OpenCL ;)

Область применения:
Я считаю, что основной областью применения подобного рендера является ДЕМОНСТРАЦИЯ идеи кому-либо в трехмерном виде. Допустим, человек хочет себе заказать машину, или ремонт в квартире. У него будет возможность «пройтись по квартире», посмотреть свою машину со всех сторон, в любом окружении, в любых цветах, сидя дома, за «бабушкиным компьютером», телефоном или планшетом.
Человек нарисовал дом в SketchUp, к примеру - у него появится возможность отрендерить его с помощью видеокарты соседа-геймера. В этом суть.

В заключении хочу добавить, что существует немало задач, требующих много вычислений. Рендеринг - лишь одна из множества вычислительных задач, которая может быть распределена между компьютерами.

Вот так. Ищу единомышленников.
Спасибо за внимание.

В продолжении ликбеза по компьютерной графике как для программистов, так и для художников хочу поговорить о том что такое рендеринг . Вопрос не так сложен как кажется, под катом подробное и доступное объяснение!

Я начал писать статьи, которые являются ликбезом для разработчика игр. И поторопился, написав статью про , не рассказав что же такое рендеринг. Поэтому эта статья будет приквелом к введению в шейдеры и отправным пунктом в нашем ликбезе.

Что такое рендеринг? (для программистов)

Итак, Википедия дает такое определение: Ре́ндеринг (англ. rendering - «визуализация») - термин в компьютерной графике, обозначающий процесс получения изображения по модели с помощью компьютерной программы.

Довольно неплохое определение, продолжим с ним. Рендеринг — это визуализация. В компьютерной графике и 3д-художники и программисты под рендерингом понимают создание плоской картинки - цифрового растрового изображения из 3д сцены.
То есть, неформальный ответ на наш вопрос «Что такое рендеринг?» — это получение 2д картинки (на экране или в файле не важно). А компьютерная программа, производящая рендеринг, называется рендером (англ. render) или рендерером (англ. renderer).

Рендер

В свою очередь словом «рендер» называют чаще всего результат рендеринга. Но иногда и процесс называют так же (просто в английском глагол — render перенесся в русский, он короче и удобнее). Вы, наверняка, встречали различные картинки в интернете, с подписью «Угадай рендер или фото?». Имеется ввиду это 3D-визуализация или реальная фотография (уж настолько компьютерная графика продвинулась, что порой и не разберешься).

Виды рендеринга

В зависимости от возможности сделать вычисления параллельными существуют:

  • многопоточный рендеринг — вычисления выполняются параллельно в несколько потоков, на нескольких ядрах процессора,
  • однопоточный рендеринг — в этом случае вычисления выполняются в одном потоке синхронно.

Существует много алгоритмов рендеринга, но все их можно разделить на две группы по принципу получения изображения: растеризация 3д моделей и трасировка лучей. Оба способа используются в видеоиграх. Но трасировка лучей чаще используется не для получения изображений в режиме реального времени, а для подготовки так называемых лайтмапов — световых карт, которые предрасчитываются во время разработки, а после результаты предрасчета используются во время выполнения.

В чем суть методов? Как работает растеризация и трасировка лучей? Начнем с растеризация.

Растеризация полигональной модели

Сцена состоит из моделей, расположенных на ней. В свою очередь каждая модель состоит из примитивов.
Это могут быть точки, отрезки, треугольники и некоторые другие примитивы, такие как квады например. Но если мы рендерим не точки и не отрезки, любые примитивы превращаются в треугольники.

Задача растеризатора (программа, которая выполняет растеризацию) получить из этих примитивов пиксели результирующего изображения. Растеризация в разрезе графического пайплайна, происходит после вершинного шейдера и до фрагментного ().

*возможно следующей статьёй будет обещанный мной разбор графического пайплайна, напишите в комментариях нужен ли такой разбор, мне будет приятно и полезно узнать скольким людям интересно это всё. Я сделал отдельную страничку где есть список разобранных тем и будущих —

В случае с отрезком нужно получить пиксели линии соединяющей две точки, в случае с треугольником пиксели которые внутри него. Для первой задачи применяется алгоритм Брезенхема, для второй может применяться алгоритм заметания прямыми или проверки барицентрических координат.

Сложная модель персонажа состоит из мельчайших треугольников и растеризатор генерирует из неё вполне достоверную картинку. Почему тогда заморачиваться с трассировкой лучей? Почему не растеризовать и все? А смысл вот в чем, растеризатор знает только своё рутинное дело, треугольники — в пиксели. Он ничего не знает об объектах рядом с треугольником.

А это значит что все физические процессы которые происходят в реальном мире он учесть не в состоянии. Эти процессы прямым образом влияют на изображение. Отражения, рефлексы, тени, подповерхностное рассеивание и так далее! Все без чего мы будем видеть просто пластмассовые модельки в вакууме…
А игроки хотят графоний! Игрокам нужен фотореализм!

И приходится графическим программистам изобретать различные техники, чтобы достичь близости к фотореализму. Для этого шейдерные программы используют текстуры, в которых предрассчитаны разные данные света, отражения, теней и подповерхностного рассеивания.

В свою очередь трассировка лучей позволяет рассчитать эти данные, но ценой большего времени рассчета, которое не может быть произведено во время выполнения. Рассмотрим, что из себя представляет этот метод.

Трасировка лучей (англ. ray tracing )

Помните о корпускулярно волновом дуализме? Напомню в чем суть: свет ведёт себя и как волны и как поток частиц — фотонов. Так вот трассировка (от англ «trace» прослеживать путь), это симуляция лучей света, грубо говоря. Но трассирование каждого луча света в сцене непрактично и занимает неприемлемо долгое время.

Мы ограничимся относительно малым количеством, и будем трассировать лучи по нужным нам направлениям.
А какие направления нам нужны? Нам надо определять какие цвета будут иметь пиксели в результирующей картинке. Тоесть количество лучей мы знаем, оно равно количеству пикселей в изображении.

Что с направлением? Все просто, мы будем трассировать лучи в соответствии с точкой наблюдения (то как наша виртуальная камера направлена). Луч встретится в какой-то точке с объектом сцены (если не встретится, значит там темный пиксель или пиксель неба из скайбокса, например).

При встрече с объектом луч не прекращает своё распространение, а разделяется на три луча-компонента, каждый из которых вносит свой вклад в цвет пикселя на двумерном экране: отражённый, теневой и преломлённый. Количество таких компонентов определяет глубину трассировки и влияет на качество и фотореалистичность изображения. Благодаря своим концептуальным особенностям, метод позволяет получить очень фотореалистичные изображения, однако из-за большой ресурсоёмкости процесс визуализации занимает значительное время.

Рендеринг для художников

Но рендеринг это не только программная визуализация! Хитрые художники тоже используют его. Так что такое рендеринг с точки зрения художника? Примерно то же самое, что и для программистов, только концепт-художники выполняют его сами. Руками. Точно так же как рендерер в видео-игре или V-ray в Maya художники учитывают освещение, подповерхностное рассеивание, туман и др. факторы, влияющие на конечный цвет поверхности.

К примеру картинка выше, поэтапно прорабатывается таким образом: Грубый скетч — Лайн — Цвет — Объем — Рендер материалов.

Рендер материалов включает в себя текстурирование, проработку бликов — металлы, например, чаще всего очень гладкие поверхности, которые имеют четкие блики на гранях. Помимо всего этого художники сталкиваются с растеризацией векторной графики, это примерно то же самое, что и растеризация 3д-модели.

Растеризация векторной графики

Суть примерно такая же, есть данные 2д кривых, это те контуры, которыми заданы объекты. У нас есть конечное растровое изображение и растеризатор переводит данные кривых в пиксели. После этого у нас нет возможности масштабировать картинку без потери качества.

Читайте дальше

  • — простое объяснение сложных и страшных шейдеров
  • — Полезный обзор частиц и подборка видео-уроков, по созданию спецэффектов в Unity3d

Послесловие

В этой статье, я надеюсь, вы осили столько букв, вы получили представление о том, что такое рендеринг, какие виды рендеринга существуют. Если какие-то вопросы остались — смело задавайте их в комментариях, я обязательно отвечу. Буду благодарен за уточнения и указания на какие-то неточности и ошибки.

Рендеринг (rendering) – завершающий этап обработки сцен, полученных в результате 3d-визуализации. Различают две основных стадии этого процесса – в реальном времени, используют преимущественно в компьютерных играх, и пре-рендеринг. Именно он нашел применение в бизнесе. В первом случае большее значение имеет скорость выполнения расчетов, только при соблюдении этого условия качество изображений останется высоким. При предварительном рендеринге в приоритете реалистичность рисунка.

Пре-рендеринг

Для выполнения рендеринга этого типа используют особое программное обеспечение. Продолжительность обработки зависит от ее сложности. Процесс состоит из наложения света и образуемых им теней, добавления цвета, иных эффектов. Главная задача моделлеров – добиться, чтобы результат был предельно правдивым, для чего необходимо ориентироваться в одном из самых сложных разделов физики – оптике. Грамотно выполненный рендеринг особенно важен в 3d-моделировании интерьеров – надо точно просчитать, как будет выглядеть помещение при естественном и искусственном освещении, подобрать оттенки предметов обстановки, иные нюансы. Основные методы финальной обработки при объемном проектировании:


Принято использовать комбинацию нескольких методов, что позволяет снизить затраты ресурсов и обеспечить требуемое качество.

Особенности рендеринга

На доведение предварительного эскиза до совершенства понадобится много времени – продолжительность обработки сложных изображений компьютером может достигать нескольких часов. За этот период происходит:

  • раскраска;
  • детализация мелких элементов;
  • проработка световых эффектов – отражения потоков, теней и прочих;
  • отображение климатических условий;
  • реализация иных деталей, позволяющих повысить реалистичность.

Сложность обработки влияет на формирование цены 3d-визуализации , чем больше потребуется времени, тем дороже обойдется работа над проектом. По возможности моделлеры упрощают процесс рендеринга, к примеру, просчитывают отдельные моменты или используют другие инструменты, позволяющие сократить время визуализации без ухудшения ее качества.

У многих часто возникают вопросы по поводу улучшения визуального качества визуализаций в 3ds Max и сокращению затрачиваемого на них времени. Основные советы, которые можно дать в качестве ответа на этот вопрос, касаются оптимизации геометрии, материалов и текстур.

1. Оптимизация геометрии 3D-моделей
В процессе моделирования необходимо придерживаться минимально возможного количества полигонов, потому что если модель содержит много ненужных полигонов, это влечет за собой увеличение времени на визуализацию.

Не допускайте ошибок в геометрии моделей, таких как открытые рёбра, перекрывающиеся полигоны. Старайтесь, чтобы модели были как можно более чистыми.

2. Какими должны быть текстуры Размер текстуры должен соответствовать размеру модели на финальном рендере. К примеру, если вы скачали где-нибудь текстуру с разрешением 3000 х 3000 пикселей, а модель, к которой её применяете, находится на заднем плане сцены или имеет совсем маленький масштаб, то визуализатор будет перегружен излишним разрешением текстуры.

Взгляните на этот пример рендера:

Следует иметь в виду, что для усиления реализма к материалам необходимо добавлять карты Bump (Неровности) и Specular (Зеркальные отражения), поскольку в реальности каждый объект обладает рельефом и отражательной способностью. Создать такие карты из оригинальной текстуры не составит проблемы - достаточно поверхностных знаний Adobe Photoshop .

Правильное освещение

Чрезвычайно важный пункт. Старайтесь всегда применять системы физического освещения, приближенные к реальным, такие как Daylight System (Система дневного освещения), а также VRay Sun и Sky , HDRI, а в качестве источников света в интерьерах использовать фотометрические с профилями IES. Это прибавит сцене реализма, так как в этом случае при рендере будут задействованы настоящие алгоритмы вычисления световой информации.

Не забывайте о гамма-коррекции изображений! При гамме 2.2 цвета в 3ds Max будут отображаться правильно. Однако увидеть их такими можно только, если ваш монитор правильно откалиброван.



4. Масштаб сцены
Для получения рендеров пристойного качества масштаб единиц измерения в сцене имеет колоссальное значение. Чаще всего у нас принято работать в сантиметрах. Это позволяет не только создавать модели более точными, но также помогает при расчете освещения и отражений.

5. Настройки визуализации
Если работаете с VRay, то для сглаживания краёв изображения рекомендуется использовать Adaptive DMC . Однако для достижения наилучших результатов в сценах с большим количеством деталей и множеством размытых отражений лучше применять Fixed - с этим типом изображений он работает лучше всего. Количество сабдивов при этом желательно устанавливать не менее 4, а лучше 6.
Для расчета непрямого освещения (Indirect Illumination) используйте связку Irradiance Map + Light Cache . Такой тандем позволяет быстро рассчитать освещённость в сцене, но если хочется большей детализации, можно включить опцию Detail Enhancement (Улучшение детализации) в настройках Irradiance Map, а в Light Cache активировать Pre-Filter (Префильтрация). Таким образом можно снизить зашумлённость картинки.
Хорошего качества теней можно добиться, установив количество сабдивов в настройках источников света VRay на 15-25. Помимо этого всегда используйте физическую камеру VRay, с помощью которой можно получить полный контроль над представлением света в сцене.
А для полного контроля над балансом белого, попробуйте поработать в шкале температур Кельвина. Приведу для справки таблицу температур, которой полезно будет пользоваться при работе в 3ds Max (меньшая величина означает более тёплые / красные оттенки, а более высокая даёт прохладные / синие тона):
Шкала цветовых температур Кельвина по наиболее распространённым источникам света

  • Горящая свеча - 1900К
  • Галогенные лампы - 3200К
  • Лампы заливающего света и пилотный свет - 3400К
  • Восход солнца - 4000К
  • Флуоресцентный свет (холодный белый) - 4500К
  • Дневной свет - 5500К
  • Вспышка фотоаппарата - 5500К
  • Студийный свет - 5500К
  • Свет от экрана монитора компьютера - 5500-6500К
  • Лампа дневного света - 6500К
  • Открытая тень (термин из фотографии) - 8000К
Исправляем бледные цвета в 3ds Max при гамме 2.2
При использовании гаммы 2.2 в Autodesk 3ds Max сразу бросается в глаза, что цвета материалов в Material Editor выглядят чересчур ярко и блекло по сравнению с обычным представлением в гамме 1.0. И если вам обязательно нужно соблюдать в сцене значения цветов по шкале RGB, допустим, в каком-нибудь уроке уже даны значения цветов, или заказчик предоставил свои образцы объектов в заданных цветах, то в гамме 2.2 они будут выглядеть неправильно. Коррекция RGB цветов в гамме 2.2 Для того чтобы добиться правильного уровня яркости цвета, нужно переназначить его значения RGB, воспользовавшись несложным уравнением: новый_цвет=255*((старый_цвет/255)^2.2). В уравнении сформулировано, что чтобы получить новое значение цвета в гамме 2.2 по RGB, нужно разделить старое RGB значение на величину белого цвета (255), возвести всё это в степень 2.2, и затем умножить получившееся на значение белого цвета (255). Если математика - не ваш конёк, не отчаивайтесь - 3ds Max посчитает всё за вас, ведь в нём есть встроенный калькулятор Numeric Expression Evaluator (Вычислитель численных выражений). Результат выражения (математической функции) возвращает некое значение. Полученное значение затем можно вставить в любое поле программы, будь то параметры создания нового объекта, его трансформации, настройки модификаторов, материалов. Попробуем вычислить цвет в гамме 2.2 на практике. Внутри настроек материала щёлкните по цветовому полю для вызова окна Color Selector. Выбрав какой-нибудь цвет, поставьте курсор мыши в поле канала Red (Красный цвет) и нажмите Ctrl+N на клавиатуре, чтобы вызвать Numerical Expression Evaluator. Напишите внутри него приведенную формулу, подставив старое значение цвета в канале Red. В поле Result (Результат) отобразится решение уравнения. Нажмите кнопку Paste (Вставка), чтобы вставить полученное значение вместо старого в канал Red. Проделайте эту операцию с каналами цветов Green (Зелёный) и Blue (Синий). С исправленными значениями RGB цвета будут выглядеть корректно и в окнах проекций, и на рендере. Работа с цветами по схеме формирования CMYK Не всегда приходится иметь дело только с RGB. Иногда попадаются цвета для печати по схеме CMYK, и их нужно преобразовывать в RGB, поскольку 3ds Max поддерживает только. Можно, конечно, запустить Adobe Photoshop и переводить значения в нём, но есть способ более удобный. Для 3ds Max создан новый тип селектора цветов - Cool Picker, который позволяет видеть значения цвета во всех возможных цветовых схемах непосредственно в Максе. Скачайте плагин Cool Picker отсюда для своей версии 3ds Max. Устанавливается он очень просто: сам файл с расширением dlu нужно поместить в папку 3ds Max\plugins. Сделать его активным можно, перейдя в меню Customize > Preferences > вкладка General > Color Selector: Cool Picker. Таким образом, он заменит собой стандартный селектор цветов. Есть вопросы? Задавайте

Начало формы

Использование гаммы 2.2 в 3ds max + V-Ray на практике

После теоретической части по настройке гаммы в V-Ray и 3ds max, мы переходим непосредственно к практике.

Многие пользователи 3ds max, особенно те, которые сталкиваются с визуализацией интерьеров, замечают, что при постановке физически правильного освещения, определённые места в сцене всё равно затемнены, хотя на самом деле всё должно быть освещено хорошо. Особенно это заметно в углах геометрии и на теневой стороне объектов.

Каждый пытался решить эту проблему по-разному. Начинающие пользователи 3ds max первым делом старались исправить это простым увеличением яркости источников света.

Такой подход приносит определённые результаты, увеличивается общая освещённость сцены. Однако, он также приводит к нежелательным пересвечиваниям, причиной которых являются данные источники света. Это никак не меняет в лучшую сторону ситуацию с нереалистичным изображением. Одна проблема с темнотой (в труднодоступных для света местах) сменяется другой проблемой - с пересвечиваниями (рядом с источниками света).

Некоторые люди изобретали более сложные способы "решения" проблемы, добавляя в сцену дополнительные источники освещения, делая их невидимыми для камеры, чтобы просто подсветить затемнённые места. Вместе с этим ни о каком реализме и физической точности изображения говорить уже не приходится. Параллельно с подсветкой затемнённых мест исчезали тени, и создавалось впечатление, что объекты сцены парят в воздухе.

Все вышеприведённые способы борьбы с неправдоподобной тьмой слишком прямолинейны и очевидны, но неэффективны.

Суть проблемы тёмных рендеров состоит в том, что значение гаммы изображения и монитора различны.

Что такое гамма?
Гамма - это степень нелинейности перехода цвета от тёмных значений к ярким. С математической точки зрения значение линейной гаммы равно 1.0, именно поэтому такие программы, как 3ds max, V-Ray и пр. по умолчанию выполняют расчёты в гамме 1.0. Но значение гаммы 1.0 совместимо только с "идеальным" монитором, который обладает линейной зависимостью отображения перехода цвета от белого к чёрному. Но поскольку таких мониторов в природе не существует, фактическая гамма нелинейна.

Значение гаммы для стандарта видео NTSC составляет 2.2. Для компьютерных дисплеев значение гаммы, как правило, находится в пределах от 1.5 до 2.0. Но для удобства нелинейность цветового перехода на всех экрана считается равной 2.2.

Когда монитор с гаммой 2.2 показывает изображение, гамма которого составляет 1.0, то на экране мы видим тёмные цвета в гамме 1.0 вместо ожидаемых ярких цветов гаммы 2.2. Поэтому цвета из среднего диапазона (Zone 2) становятся темнее при просмотре изображения с гаммой 1.0 на устройстве вывода с гаммой 2.2. Однако в диапазоне тёмных тонов (Zone 1) представление гаммы 1.0 и 2.2 очень схоже, что позволяет отображать тени и чёрные цвета правильным образом.

В областях со светлыми тонами (Zone 3) также наблюдается много сходства. Следовательно, яркое изображение с гаммой 1.0 также достаточно корректно отображается на мониторе с гаммой 2.2.

И поэтому чтобы получить надлежащий вывод гаммы 2.2, должна быть изменена гамма исходного изображения. Конечно, это можно сделать и в Photoshop, отрегулировав гамму там. Но вряд ли можно назвать удобным такой способ, когда вы каждый раз меняете настройки изображения, сохраняете их себе на жёсткий диск, и редактируете в растровом редакторе... Из-за этого мы и не будем рассматривать этот вариант, да к тому же такой способ обладает ещё более существенными недостатками. Современные средства визуализации, такие как V-Ray, рассчитывают изображение адаптивно, поэтому точность расчёта зависит от многих параметров, включая яркость света в определённой области. Таким образом, в местах с тенью V-Ray просчитывает освещённость изображения менее точно, и сами такие места становятся зашумлёнными. А в ярких и хорошо различимых областях изображения расчёт визуализации проходит с большей аккуратностью и с минимумом артефактов. Это позволяет ускорить рендеринг благодаря экономии времени на едва различимых областях изображения. Поднимая гамму выходного изображения в Photoshop, изменяется яркость частей изображения, которые V-Ray посчитал менее значимыми и понизил качество их расчётов. Таким образом становятся видимыми все нежелательные артефакты, а картинка выглядит просто ужасно, но зато ярче, чем до того В добавок изменится также гамма текстур, они будут выглядеть блекло и бесцветно.

Единственным верным выходом из этой ситуации является изменение значения гаммы, в которой работает визуализатор V-Ray. Так вы получите приемлемую яркость в полутонах, где не будет таких очевидных артефактов.

В уроке будет показано, как настраивается гамма в визуализаторе V-Ray и 3ds max.

Чтобы изменить гамму, с которой будет работать V-Ray, достаточно найти раскрывающуюся вкладку V-Ray: Color Mapping , которая находится на вкладке V-Ray, которая в свою очередь располагается в окне Render Scene (F10), и установить значение Gamma: в 2.2.

Особенность V-Ray заключается в том, что коррекция гаммы цветового отображения работает только в V-Ray Frame Buffer, поэтому если вы хотите увидеть результаты ваших манипуляций с гаммой, то необходимо включить кадровый буфер V-Ray: Frame Buffer на вкладке V-Ray.

После этого рендеринг будет проходить с необходимой нам гаммой 2.2, с нормально освещёнными полутонами. Есть ещё один недостаток, и заключается он в том, что используемые в сцене текстуры будут выглядеть светлее, они будут обесцвеченными и выгоревшими.

Почти все используемые нами текстуры на мониторе выглядят нормально, поскольку они уже настроены самим монитором и изначально имеют гамму 2.2. Для того чтобы визуализатор V-Ray сконфигурировал гамму 2.2 и не умножал гамму изображения на значение гаммы в визуализаторе (2.2 * 2.2), текстуры должны находиться в гамме 1.0. Затем, после их коррекции визуализатором, их гамма станет равной 2.2.

Можно сделать все текстуры темнее, изменив их гамму с 2.2 на 1.0 в Photoshop, с расчётом на дальнейшее их осветление визуализатором. Впрочем, такой метод был бы очень утомительным и потребовал бы времени и терпения на обеспечение всех текстур в сцене в гамме 1.0, и, во-вторых, это сделает невозможным просмотр текстур в нормальной гамме, потому что они будут всё время затемнены.

Чтобы этого избежать, просто обеспечим их настройку на входе 3ds max. К счастью, в 3ds max присутствует достаточно настроек для гаммы. Настройки гаммы доступны из главного меню 3ds max:

Customize > Preferences ...> Gamma and LUT

Главные настройки гаммы 3ds max расположены на вкладке Gamma and LUT. В частности, нам потребуется настройка коррекции входных текстур, называемая Input Gamma . Нас не должно вводить в заблуждение то, что там по умолчанию установлено значение 1.0. Это не корректирующее значение, а значение гаммы текстур на входе. По умолчанию принято считать, что все текстуры состоят в гамме 1.0, но на самом деле, как упоминалось ранее, они установлены в гамме 2.2. И значит, мы должны указать значение гаммы 2.2, вместо 1.0.

Не забудьте установить галочку в параметре Enable Gamma / LUT Correction , чтобы получить доступ к настройкам гаммы.

Изображения, сделанные в правильной гамме, выглядят гораздо лучше и корректнее, чем те, которые были получены с использованием описанных в начале статьи настроек. Они имеют правильные полутона, ярких пересветов вблизи источников света нет, как нет и артефактов в неосвещенных областях изображения. Таким образом текстуры будут также насыщенными и яркими.

Кажется, всё, но под конец урока я бы хотел рассказать ещё об одной вещи по работе с гаммой. Поскольку визуализатор V-Ray работает в необычной для себя гамме, то приходится устанавливать режим отображения гаммы 3ds max в 2.2, чтобы цвета в Material Editor и Color Selector отображались правильно. В противном случае может возникнуть путаница, когда материалы будут настраиваться в гамме 1.0, но на самом деле внутри программы они будут преобразованы в гамму 2.2.

Для установки правильного отображения материалов в редакторе материалов 3ds max, следует использовать настройки во вкладке Gamma and LUT. Для этого должны быть установлены значение гаммы 2.2 в разделе Display и проставлены галочки в Affect Color Selectors и Affect Material Editor в разделе Materials and Colors.

Гамма 2.2 уже стала стандартом при работе с 3ds max и V-Ray. Надеюсь, что данный материал поможет вам в работе!

Loading...Loading...